| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniprg |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 2 |
1
|
3adant1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 3 |
|
uniiun |
⊢ ∪ { 𝐴 , 𝐵 } = ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 |
| 4 |
2 3
|
eqtr3di |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ∪ 𝐵 ) = ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ) |
| 5 |
|
simp1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → 𝑈 ∈ Univ ) |
| 6 |
|
grupr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 ) |
| 7 |
|
vex |
⊢ 𝑥 ∈ V |
| 8 |
7
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 9 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝑈 ) ) |
| 10 |
|
eleq1a |
⊢ ( 𝐵 ∈ 𝑈 → ( 𝑥 = 𝐵 → 𝑥 ∈ 𝑈 ) ) |
| 11 |
9 10
|
jaao |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑥 ∈ 𝑈 ) ) |
| 12 |
8 11
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } → 𝑥 ∈ 𝑈 ) ) |
| 13 |
12
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ 𝑈 ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ 𝑈 ) |
| 15 |
|
gruiun |
⊢ ( ( 𝑈 ∈ Univ ∧ { 𝐴 , 𝐵 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ 𝑈 ) → ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ 𝑈 ) |
| 16 |
5 6 14 15
|
syl3anc |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ∪ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ 𝑈 ) |
| 17 |
4 16
|
eqeltrd |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |