Metamath Proof Explorer


Theorem gruun

Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruun ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴𝐵 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 uniprg ( ( 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
2 1 3adant1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
3 uniiun { 𝐴 , 𝐵 } = 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥
4 2 3 eqtr3di ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴𝐵 ) = 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥 )
5 simp1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → 𝑈 ∈ Univ )
6 grupr ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → { 𝐴 , 𝐵 } ∈ 𝑈 )
7 vex 𝑥 ∈ V
8 7 elpr ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴𝑥 = 𝐵 ) )
9 eleq1a ( 𝐴𝑈 → ( 𝑥 = 𝐴𝑥𝑈 ) )
10 eleq1a ( 𝐵𝑈 → ( 𝑥 = 𝐵𝑥𝑈 ) )
11 9 10 jaao ( ( 𝐴𝑈𝐵𝑈 ) → ( ( 𝑥 = 𝐴𝑥 = 𝐵 ) → 𝑥𝑈 ) )
12 8 11 syl5bi ( ( 𝐴𝑈𝐵𝑈 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } → 𝑥𝑈 ) )
13 12 ralrimiv ( ( 𝐴𝑈𝐵𝑈 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥𝑈 )
14 13 3adant1 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥𝑈 )
15 gruiun ( ( 𝑈 ∈ Univ ∧ { 𝐴 , 𝐵 } ∈ 𝑈 ∧ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥𝑈 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥𝑈 )
16 5 6 14 15 syl3anc ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → 𝑥 ∈ { 𝐴 , 𝐵 } 𝑥𝑈 )
17 4 16 eqeltrd ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈 ) → ( 𝐴𝐵 ) ∈ 𝑈 )