Metamath Proof Explorer


Theorem gruuni

Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion gruuni ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )

Proof

Step Hyp Ref Expression
1 uniiun 𝐴 = 𝑥𝐴 𝑥
2 gruelss ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )
3 dfss3 ( 𝐴𝑈 ↔ ∀ 𝑥𝐴 𝑥𝑈 )
4 2 3 sylib ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ∀ 𝑥𝐴 𝑥𝑈 )
5 gruiun ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ∧ ∀ 𝑥𝐴 𝑥𝑈 ) → 𝑥𝐴 𝑥𝑈 )
6 4 5 mpd3an3 ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝑥𝐴 𝑥𝑈 )
7 1 6 eqeltrid ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → 𝐴𝑈 )