Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | gruuni | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝐴 ∈ 𝑈 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
2 | gruelss | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ⊆ 𝑈 ) | |
3 | dfss3 | ⊢ ( 𝐴 ⊆ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) | |
4 | 2 3 | sylib | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) |
5 | gruiun | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) | |
6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝐴 𝑥 ∈ 𝑈 ) |
7 | 1 6 | eqeltrid | ⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ∪ 𝐴 ∈ 𝑈 ) |