Step |
Hyp |
Ref |
Expression |
1 |
|
elmapg |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝑈 ) ) |
2 |
|
elgrug |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) ) |
3 |
2
|
ibi |
⊢ ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) ) |
4 |
3
|
simprd |
⊢ ( 𝑈 ∈ Univ → ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) ) |
5 |
|
rneq |
⊢ ( 𝑦 = 𝐹 → ran 𝑦 = ran 𝐹 ) |
6 |
5
|
unieqd |
⊢ ( 𝑦 = 𝐹 → ∪ ran 𝑦 = ∪ ran 𝐹 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝐹 → ( ∪ ran 𝑦 ∈ 𝑈 ↔ ∪ ran 𝐹 ∈ 𝑈 ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 → ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑈 ( 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈 ↑m 𝑥 ) ∪ ran 𝑦 ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑈 ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) |
11 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑈 ↑m 𝑥 ) = ( 𝑈 ↑m 𝐴 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) ↔ 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) → ∪ ran 𝐹 ∈ 𝑈 ) ↔ ( 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) ) |
14 |
13
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝑈 ( 𝐹 ∈ ( 𝑈 ↑m 𝑥 ) → ∪ ran 𝐹 ∈ 𝑈 ) → ( 𝐴 ∈ 𝑈 → ( 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) ) |
15 |
4 10 14
|
3syl |
⊢ ( 𝑈 ∈ Univ → ( 𝐴 ∈ 𝑈 → ( 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) ) |
16 |
15
|
imp |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 ∈ ( 𝑈 ↑m 𝐴 ) → ∪ ran 𝐹 ∈ 𝑈 ) ) |
17 |
1 16
|
sylbird |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ) → ( 𝐹 : 𝐴 ⟶ 𝑈 → ∪ ran 𝐹 ∈ 𝑈 ) ) |
18 |
17
|
3impia |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐹 : 𝐴 ⟶ 𝑈 ) → ∪ ran 𝐹 ∈ 𝑈 ) |