Metamath Proof Explorer


Theorem gruurn

Description: A Grothendieck universe contains the range of any function which takes values in the universe (see gruiun for a more intuitive version). (Contributed by Mario Carneiro, 9-Jun-2013)

Ref Expression
Assertion gruurn ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹𝑈 )

Proof

Step Hyp Ref Expression
1 elmapg ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐹 ∈ ( 𝑈m 𝐴 ) ↔ 𝐹 : 𝐴𝑈 ) )
2 elgrug ( 𝑈 ∈ Univ → ( 𝑈 ∈ Univ ↔ ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) ) )
3 2 ibi ( 𝑈 ∈ Univ → ( Tr 𝑈 ∧ ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) ) )
4 3 simprd ( 𝑈 ∈ Univ → ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) )
5 rneq ( 𝑦 = 𝐹 → ran 𝑦 = ran 𝐹 )
6 5 unieqd ( 𝑦 = 𝐹 ran 𝑦 = ran 𝐹 )
7 6 eleq1d ( 𝑦 = 𝐹 → ( ran 𝑦𝑈 ran 𝐹𝑈 ) )
8 7 rspccv ( ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 → ( 𝐹 ∈ ( 𝑈m 𝑥 ) → ran 𝐹𝑈 ) )
9 8 3ad2ant3 ( ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) → ( 𝐹 ∈ ( 𝑈m 𝑥 ) → ran 𝐹𝑈 ) )
10 9 ralimi ( ∀ 𝑥𝑈 ( 𝒫 𝑥𝑈 ∧ ∀ 𝑦𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ∧ ∀ 𝑦 ∈ ( 𝑈m 𝑥 ) ran 𝑦𝑈 ) → ∀ 𝑥𝑈 ( 𝐹 ∈ ( 𝑈m 𝑥 ) → ran 𝐹𝑈 ) )
11 oveq2 ( 𝑥 = 𝐴 → ( 𝑈m 𝑥 ) = ( 𝑈m 𝐴 ) )
12 11 eleq2d ( 𝑥 = 𝐴 → ( 𝐹 ∈ ( 𝑈m 𝑥 ) ↔ 𝐹 ∈ ( 𝑈m 𝐴 ) ) )
13 12 imbi1d ( 𝑥 = 𝐴 → ( ( 𝐹 ∈ ( 𝑈m 𝑥 ) → ran 𝐹𝑈 ) ↔ ( 𝐹 ∈ ( 𝑈m 𝐴 ) → ran 𝐹𝑈 ) ) )
14 13 rspccv ( ∀ 𝑥𝑈 ( 𝐹 ∈ ( 𝑈m 𝑥 ) → ran 𝐹𝑈 ) → ( 𝐴𝑈 → ( 𝐹 ∈ ( 𝑈m 𝐴 ) → ran 𝐹𝑈 ) ) )
15 4 10 14 3syl ( 𝑈 ∈ Univ → ( 𝐴𝑈 → ( 𝐹 ∈ ( 𝑈m 𝐴 ) → ran 𝐹𝑈 ) ) )
16 15 imp ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐹 ∈ ( 𝑈m 𝐴 ) → ran 𝐹𝑈 ) )
17 1 16 sylbird ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈 ) → ( 𝐹 : 𝐴𝑈 ran 𝐹𝑈 ) )
18 17 3impia ( ( 𝑈 ∈ Univ ∧ 𝐴𝑈𝐹 : 𝐴𝑈 ) → ran 𝐹𝑈 )