Step |
Hyp |
Ref |
Expression |
1 |
|
grutr |
⊢ ( 𝑈 ∈ Univ → Tr 𝑈 ) |
2 |
1
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → Tr 𝑈 ) |
3 |
|
simpr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝑈 ≠ ∅ ) |
4 |
|
gruuni |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝑈 ) |
5 |
4
|
adantlr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∪ 𝑥 ∈ 𝑈 ) |
6 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝑥 ∈ 𝑈 ) |
7 |
6
|
adantlr |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → 𝒫 𝑥 ∈ 𝑈 ) |
8 |
|
grupr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑥 ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) → { 𝑥 , 𝑦 } ∈ 𝑈 ) |
9 |
8
|
ad4ant134 |
⊢ ( ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) ∧ 𝑦 ∈ 𝑈 ) → { 𝑥 , 𝑦 } ∈ 𝑈 ) |
10 |
9
|
ralrimiva |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) |
11 |
5 7 10
|
3jca |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) ∧ 𝑥 ∈ 𝑈 ) → ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) |
13 |
|
iswun |
⊢ ( 𝑈 ∈ Univ → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → ( 𝑈 ∈ WUni ↔ ( Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑈 ( ∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀ 𝑦 ∈ 𝑈 { 𝑥 , 𝑦 } ∈ 𝑈 ) ) ) ) |
15 |
2 3 12 14
|
mpbir3and |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝑈 ≠ ∅ ) → 𝑈 ∈ WUni ) |