Step |
Hyp |
Ref |
Expression |
1 |
|
gruun |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
2 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
3 |
|
grupw |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) |
4 |
|
xpsspw |
⊢ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) |
5 |
|
gruss |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ∧ ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
6 |
4 5
|
mp3an3 |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
7 |
3 6
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝒫 ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
8 |
2 7
|
syldan |
⊢ ( ( 𝑈 ∈ Univ ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
9 |
8
|
3ad2antl1 |
⊢ ( ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ∧ ( 𝐴 ∪ 𝐵 ) ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |
10 |
1 9
|
mpdan |
⊢ ( ( 𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) → ( 𝐴 × 𝐵 ) ∈ 𝑈 ) |