Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) |
2 |
|
gsmsymgrfix.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
gsmsymgreq.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) |
4 |
|
gsmsymgreq.p |
⊢ 𝑃 = ( Base ‘ 𝑍 ) |
5 |
|
gsmsymgreq.i |
⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) |
6 |
|
ccatws1len |
⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) = ( ( ♯ ‘ 𝑋 ) + 1 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) ) |
8 |
|
lencl |
⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
9 |
|
elnn0uz |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ) |
10 |
8 9
|
sylib |
⊢ ( 𝑋 ∈ Word 𝐵 → ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) ) |
11 |
|
fzosplitsn |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
12 |
10 11
|
syl |
⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ( ♯ ‘ 𝑋 ) + 1 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
13 |
7 12
|
eqtrd |
⊢ ( 𝑋 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) = ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ) |
16 |
15
|
raleqdv |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
17 |
8
|
adantr |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
19 |
|
fveq2 |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) |
20 |
19
|
fveq1d |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) |
23 |
20 22
|
eqeq12d |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑖 = ( ♯ ‘ 𝑋 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) |
25 |
24
|
ralunsn |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℕ0 → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) |
26 |
18 25
|
syl |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∪ { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) |
27 |
|
simp1l |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → 𝑋 ∈ Word 𝐵 ) |
28 |
|
ccats1val1 |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( 𝑋 ‘ 𝑖 ) ) |
29 |
27 28
|
sylan |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) = ( 𝑋 ‘ 𝑖 ) ) |
30 |
29
|
fveq1d |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) ) |
31 |
|
simp2l |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → 𝑌 ∈ Word 𝑃 ) |
32 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 0 ..^ ( ♯ ‘ 𝑋 ) ) = ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) |
33 |
32
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
34 |
33
|
biimpd |
⊢ ( ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
35 |
34
|
3ad2ant3 |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) |
37 |
|
ccats1val1 |
⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
38 |
31 36 37
|
syl2an2r |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
39 |
38
|
fveq1d |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) |
40 |
30 39
|
eqeq12d |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
41 |
40
|
ralbidv |
⊢ ( ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
42 |
41
|
ralbidva |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
43 |
|
eqidd |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) |
44 |
|
ccats1val2 |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) → ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) = 𝐶 ) |
45 |
44
|
fveq1d |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑋 ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
46 |
43 45
|
mpd3an3 |
⊢ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
47 |
46
|
3ad2ant1 |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝐶 ‘ 𝑛 ) ) |
48 |
|
ccats1val2 |
⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) = 𝑅 ) |
49 |
48
|
fveq1d |
⊢ ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
50 |
49
|
3expa |
⊢ ( ( ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
51 |
50
|
3adant1 |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) |
52 |
47 51
|
eqeq12d |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ↔ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
53 |
52
|
ralbidv |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
54 |
42 53
|
anbi12d |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
55 |
16 26 54
|
3bitrd |
⊢ ( ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
56 |
55
|
ad2antlr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) ) |
57 |
|
pm3.35 |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) ) |
59 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) |
60 |
58 59
|
eqeq12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ) |
61 |
60
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ↔ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) |
62 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑁 ∈ Fin ) |
63 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑀 ∈ Fin ) |
64 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝐼 ) |
65 |
62 63 64
|
3jca |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ) |
66 |
65
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ) |
67 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) |
68 |
|
simplr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) |
69 |
68
|
anim1i |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) |
70 |
1 2 3 4 5
|
gsmsymgreqlem1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
71 |
70
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝑛 ∈ 𝐼 ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) |
72 |
66 67 69 71
|
syl21anc |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) ∧ ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) |
73 |
72
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) ∧ 𝑛 ∈ 𝐼 ) → ( ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
74 |
73
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
75 |
74
|
expcom |
⊢ ( ∀ 𝑗 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑗 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑗 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
76 |
61 75
|
sylbi |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
77 |
76
|
com23 |
⊢ ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
78 |
57 77
|
syl |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
79 |
78
|
impancom |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
80 |
79
|
com13 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
81 |
80
|
imp |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ∧ ∀ 𝑛 ∈ 𝐼 ( 𝐶 ‘ 𝑛 ) = ( 𝑅 ‘ 𝑛 ) ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
82 |
56 81
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) |
83 |
82
|
ex |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵 ) ∧ ( 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑋 ) = ( ♯ ‘ 𝑌 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑋 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑌 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑋 ++ 〈“ 𝐶 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑌 ++ 〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |