| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmsymgrfix.s |
⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) |
| 2 |
|
gsmsymgrfix.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 3 |
|
hasheq0 |
⊢ ( 𝑤 ∈ V → ( ( ♯ ‘ 𝑤 ) = 0 ↔ 𝑤 = ∅ ) ) |
| 4 |
3
|
elv |
⊢ ( ( ♯ ‘ 𝑤 ) = 0 ↔ 𝑤 = ∅ ) |
| 5 |
4
|
biimpri |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 ) |
| 6 |
5
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ 0 ) ) |
| 7 |
|
fzo0 |
⊢ ( 0 ..^ 0 ) = ∅ |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ∅ ) |
| 9 |
|
fveq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝑤 = ∅ → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 12 |
8 11
|
raleqbidv |
⊢ ( 𝑤 = ∅ → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑤 = ∅ → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ∅ ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑤 = ∅ → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) |
| 16 |
12 15
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑤 = ∅ → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑦 ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑤 = 𝑦 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ) |
| 20 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) |
| 21 |
20
|
fveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 22 |
21
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 23 |
19 22
|
raleqbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 24 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑦 ) ) |
| 25 |
24
|
fveq1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 27 |
23 26
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 31 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑤 ‘ 𝑖 ) = ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ) |
| 32 |
31
|
fveq1d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 33 |
32
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 34 |
30 33
|
raleqbidv |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 35 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) |
| 36 |
35
|
fveq1d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) ) |
| 37 |
36
|
eqeq1d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 38 |
34 37
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 39 |
38
|
imbi2d |
⊢ ( 𝑤 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 42 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
| 43 |
42
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) ) |
| 44 |
43
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 45 |
41 44
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑊 ) ) |
| 47 |
46
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) ) |
| 48 |
47
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 49 |
45 48
|
imbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 50 |
49
|
imbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝐾 ) = 𝐾 ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 51 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 52 |
51
|
gsum0 |
⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
| 53 |
1
|
symgid |
⊢ ( 𝑁 ∈ Fin → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 55 |
52 54
|
eqtr4id |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑆 Σg ∅ ) = ( I ↾ 𝑁 ) ) |
| 56 |
55
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = ( ( I ↾ 𝑁 ) ‘ 𝐾 ) ) |
| 57 |
|
fvresi |
⊢ ( 𝐾 ∈ 𝑁 → ( ( I ↾ 𝑁 ) ‘ 𝐾 ) = 𝐾 ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( I ↾ 𝑁 ) ‘ 𝐾 ) = 𝐾 ) |
| 59 |
56 58
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) |
| 60 |
59
|
a1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ∅ ) ‘ 𝐾 ) = 𝐾 ) ) |
| 61 |
|
ccatws1len |
⊢ ( 𝑦 ∈ Word 𝐵 → ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑦 ∈ Word 𝐵 → ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 63 |
62
|
raleqdv |
⊢ ( 𝑦 ∈ Word 𝐵 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) ) |
| 66 |
1 2
|
gsmsymgrfixlem1 |
⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 67 |
66
|
3expb |
⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 68 |
65 67
|
sylbid |
⊢ ( ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ∧ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) |
| 69 |
68
|
exp32 |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 70 |
69
|
a2d |
⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑦 ) ‘ 𝐾 ) = 𝐾 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) = 𝐾 ) ) ) ) |
| 71 |
17 28 39 50 60 70
|
wrdind |
⊢ ( 𝑊 ∈ Word 𝐵 → ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 72 |
71
|
com12 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ) → ( 𝑊 ∈ Word 𝐵 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) ) |
| 73 |
72
|
3impia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁 ∧ 𝑊 ∈ Word 𝐵 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 → ( ( 𝑆 Σg 𝑊 ) ‘ 𝐾 ) = 𝐾 ) ) |