| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmtrcl.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | gsmtrcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | gsmtrcl.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 4 |  | eqid | ⊢ ( pmSgn ‘ 𝑁 )  =  ( pmSgn ‘ 𝑁 ) | 
						
							| 5 | 1 3 4 | psgneldm2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝑆  Σg  𝑊 )  ∈  dom  ( pmSgn ‘ 𝑁 ) ) | 
						
							| 6 | 1 4 2 | psgneldm | ⊢ ( ( 𝑆  Σg  𝑊 )  ∈  dom  ( pmSgn ‘ 𝑁 )  ↔  ( ( 𝑆  Σg  𝑊 )  ∈  𝐵  ∧  dom  ( ( 𝑆  Σg  𝑊 )  ∖   I  )  ∈  Fin ) ) | 
						
							| 7 |  | ax-1 | ⊢ ( ( 𝑆  Σg  𝑊 )  ∈  𝐵  →  ( ( 𝑁  ∈  Fin  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝑆  Σg  𝑊 )  ∈  𝐵 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑆  Σg  𝑊 )  ∈  𝐵  ∧  dom  ( ( 𝑆  Σg  𝑊 )  ∖   I  )  ∈  Fin )  →  ( ( 𝑁  ∈  Fin  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝑆  Σg  𝑊 )  ∈  𝐵 ) ) | 
						
							| 9 | 6 8 | sylbi | ⊢ ( ( 𝑆  Σg  𝑊 )  ∈  dom  ( pmSgn ‘ 𝑁 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝑆  Σg  𝑊 )  ∈  𝐵 ) ) | 
						
							| 10 | 5 9 | mpcom | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑊  ∈  Word  𝑇 )  →  ( 𝑆  Σg  𝑊 )  ∈  𝐵 ) |