Step |
Hyp |
Ref |
Expression |
1 |
|
gsum0.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } |
5 |
|
id |
⊢ ( 𝐺 ∈ V → 𝐺 ∈ V ) |
6 |
|
0ex |
⊢ ∅ ∈ V |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ V → ∅ ∈ V ) |
8 |
|
f0 |
⊢ ∅ : ∅ ⟶ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } |
9 |
8
|
a1i |
⊢ ( 𝐺 ∈ V → ∅ : ∅ ⟶ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } ) |
10 |
2 1 3 4 5 7 9
|
gsumval1 |
⊢ ( 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = 0 ) |
11 |
|
df-gsum |
⊢ Σg = ( 𝑤 ∈ V , 𝑓 ∈ V ↦ ⦋ { 𝑥 ∈ ( Base ‘ 𝑤 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } / 𝑜 ⦌ if ( ran 𝑓 ⊆ 𝑜 , ( 0g ‘ 𝑤 ) , if ( dom 𝑓 ∈ ran ... , ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ( dom 𝑓 = ( 𝑚 ... 𝑛 ) ∧ 𝑥 = ( seq 𝑚 ( ( +g ‘ 𝑤 ) , 𝑓 ) ‘ 𝑛 ) ) ) , ( ℩ 𝑥 ∃ 𝑔 [ ( ◡ 𝑓 “ ( V ∖ 𝑜 ) ) / 𝑦 ] ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑦 ) ) –1-1-onto→ 𝑦 ∧ 𝑥 = ( seq 1 ( ( +g ‘ 𝑤 ) , ( 𝑓 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) ) ) |
12 |
11
|
reldmmpo |
⊢ Rel dom Σg |
13 |
12
|
ovprc1 |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = ∅ ) |
14 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( 0g ‘ 𝐺 ) = ∅ ) |
15 |
1 14
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 0 = ∅ ) |
16 |
13 15
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐺 Σg ∅ ) = 0 ) |
17 |
10 16
|
pm2.61i |
⊢ ( 𝐺 Σg ∅ ) = 0 |