| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsum2d2.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsum2d2.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsum2d2.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsum2d2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsum2d2.r | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝐶  ∈  𝑊 ) | 
						
							| 6 |  | gsum2d2.f | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | gsum2d2.u | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 8 |  | gsum2d2.n | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  ∧  ¬  𝑗 𝑈 𝑘 ) )  →  𝑋  =   0  ) | 
						
							| 9 |  | vsnex | ⊢ { 𝑗 }  ∈  V | 
						
							| 10 |  | xpexg | ⊢ ( ( { 𝑗 }  ∈  V  ∧  𝐶  ∈  𝑊 )  →  ( { 𝑗 }  ×  𝐶 )  ∈  V ) | 
						
							| 11 | 9 5 10 | sylancr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( { 𝑗 }  ×  𝐶 )  ∈  V ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ∈  V ) | 
						
							| 13 |  | iunexg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∀ 𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ∈  V )  →  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ∈  V ) | 
						
							| 14 | 4 12 13 | syl2anc | ⊢ ( 𝜑  →  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ∈  V ) | 
						
							| 15 |  | relxp | ⊢ Rel  ( { 𝑗 }  ×  𝐶 ) | 
						
							| 16 | 15 | rgenw | ⊢ ∀ 𝑗  ∈  𝐴 Rel  ( { 𝑗 }  ×  𝐶 ) | 
						
							| 17 |  | reliun | ⊢ ( Rel  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ↔  ∀ 𝑗  ∈  𝐴 Rel  ( { 𝑗 }  ×  𝐶 ) ) | 
						
							| 18 | 16 17 | mpbir | ⊢ Rel  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  Rel  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) ) | 
						
							| 20 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 21 | 20 | eldm2 | ⊢ ( 𝑥  ∈  dom  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ↔  ∃ 𝑦 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) ) | 
						
							| 22 |  | eliunxp | ⊢ ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ↔  ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) ) | 
						
							| 23 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 24 | 20 23 | opth1 | ⊢ ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  →  𝑥  =  𝑗 ) | 
						
							| 25 | 24 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) )  →  𝑥  =  𝑗 ) | 
						
							| 26 |  | simprrl | ⊢ ( ( 𝜑  ∧  ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) )  →  𝑗  ∈  𝐴 ) | 
						
							| 27 | 25 26 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 29 | 28 | exlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 ,  𝑦 〉  =  〈 𝑗 ,  𝑘 〉  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 30 | 22 29 | biimtrid | ⊢ ( 𝜑  →  ( 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 31 | 30 | exlimdv | ⊢ ( 𝜑  →  ( ∃ 𝑦 〈 𝑥 ,  𝑦 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 32 | 21 31 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  dom  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 33 | 32 | ssrdv | ⊢ ( 𝜑  →  dom  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ⊆  𝐴 ) | 
						
							| 34 | 6 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  𝐴 ∀ 𝑘  ∈  𝐶 𝑋  ∈  𝐵 ) | 
						
							| 35 |  | eqid | ⊢ ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 )  =  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) | 
						
							| 36 | 35 | fmpox | ⊢ ( ∀ 𝑗  ∈  𝐴 ∀ 𝑘  ∈  𝐶 𝑋  ∈  𝐵  ↔  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) : ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) ⟶ 𝐵 ) | 
						
							| 37 | 34 36 | sylib | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) : ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) ⟶ 𝐵 ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 | gsum2d2lem | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 )  finSupp   0  ) | 
						
							| 39 | 1 2 3 14 19 4 33 37 38 | gsum2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑚  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) ) ) ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑗 𝐺 | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑗  Σg | 
						
							| 42 |  | nfiu1 | ⊢ Ⅎ 𝑗 ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) | 
						
							| 43 |  | nfcv | ⊢ Ⅎ 𝑗 { 𝑚 } | 
						
							| 44 | 42 43 | nfima | ⊢ Ⅎ 𝑗 ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } ) | 
						
							| 45 |  | nfcv | ⊢ Ⅎ 𝑗 𝑚 | 
						
							| 46 |  | nfmpo1 | ⊢ Ⅎ 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑗 𝑛 | 
						
							| 48 | 45 46 47 | nfov | ⊢ Ⅎ 𝑗 ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) | 
						
							| 49 | 44 48 | nfmpt | ⊢ Ⅎ 𝑗 ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) | 
						
							| 50 | 40 41 49 | nfov | ⊢ Ⅎ 𝑗 ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑚 ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) | 
						
							| 52 |  | sneq | ⊢ ( 𝑚  =  𝑗  →  { 𝑚 }  =  { 𝑗 } ) | 
						
							| 53 | 52 | imaeq2d | ⊢ ( 𝑚  =  𝑗  →  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  =  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } ) ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑚  =  𝑗  →  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 )  =  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) | 
						
							| 55 | 53 54 | mpteq12dv | ⊢ ( 𝑚  =  𝑗  →  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( 𝑚  =  𝑗  →  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) )  =  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) ) | 
						
							| 57 | 50 51 56 | cbvmpt | ⊢ ( 𝑚  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) )  =  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) ) | 
						
							| 58 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 59 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 60 | 58 59 | elimasn | ⊢ ( 𝑘  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↔  〈 𝑗 ,  𝑘 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 ) ) | 
						
							| 61 |  | opeliunxp | ⊢ ( 〈 𝑗 ,  𝑘 〉  ∈  ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  ↔  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) | 
						
							| 62 | 60 61 | bitri | ⊢ ( 𝑘  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↔  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) | 
						
							| 63 | 62 | baib | ⊢ ( 𝑗  ∈  𝐴  →  ( 𝑘  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↔  𝑘  ∈  𝐶 ) ) | 
						
							| 64 | 63 | eqrdv | ⊢ ( 𝑗  ∈  𝐴  →  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  =  𝐶 ) | 
						
							| 65 | 64 | mpteq1d | ⊢ ( 𝑗  ∈  𝐴  →  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑛  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑘 𝑗 | 
						
							| 67 |  | nfmpo2 | ⊢ Ⅎ 𝑘 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) | 
						
							| 68 |  | nfcv | ⊢ Ⅎ 𝑘 𝑛 | 
						
							| 69 | 66 67 68 | nfov | ⊢ Ⅎ 𝑘 ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) | 
						
							| 70 |  | nfcv | ⊢ Ⅎ 𝑛 ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 )  =  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) ) | 
						
							| 72 | 69 70 71 | cbvmpt | ⊢ ( 𝑛  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) ) | 
						
							| 73 | 65 72 | eqtrdi | ⊢ ( 𝑗  ∈  𝐴  →  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) ) ) | 
						
							| 75 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑗  ∈  𝐴 ) | 
						
							| 76 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑘  ∈  𝐶 ) | 
						
							| 77 | 35 | ovmpt4g | ⊢ ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶  ∧  𝑋  ∈  𝐵 )  →  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 )  =  𝑋 ) | 
						
							| 78 | 75 76 6 77 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 )  =  𝑋 ) | 
						
							| 79 | 78 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  ∧  𝑘  ∈  𝐶 )  →  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 )  =  𝑋 ) | 
						
							| 80 | 79 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( 𝑘  ∈  𝐶  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑘 ) )  =  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) | 
						
							| 81 | 74 80 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) )  =  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) | 
						
							| 83 | 82 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑗 } )  ↦  ( 𝑗 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) )  =  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) ) | 
						
							| 84 | 57 83 | eqtrid | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) )  =  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑚  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑛  ∈  ( ∪  𝑗  ∈  𝐴 ( { 𝑗 }  ×  𝐶 )  “  { 𝑚 } )  ↦  ( 𝑚 ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) 𝑛 ) ) ) ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) ) ) | 
						
							| 86 | 39 85 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) ) ) |