Metamath Proof Explorer


Theorem gsum2dlem1

Description: Lemma 1 for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
gsum2d.z 0 = ( 0g𝐺 )
gsum2d.g ( 𝜑𝐺 ∈ CMnd )
gsum2d.a ( 𝜑𝐴𝑉 )
gsum2d.r ( 𝜑 → Rel 𝐴 )
gsum2d.d ( 𝜑𝐷𝑊 )
gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
gsum2d.w ( 𝜑𝐹 finSupp 0 )
Assertion gsum2dlem1 ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
2 gsum2d.z 0 = ( 0g𝐺 )
3 gsum2d.g ( 𝜑𝐺 ∈ CMnd )
4 gsum2d.a ( 𝜑𝐴𝑉 )
5 gsum2d.r ( 𝜑 → Rel 𝐴 )
6 gsum2d.d ( 𝜑𝐷𝑊 )
7 gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
8 gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
9 gsum2d.w ( 𝜑𝐹 finSupp 0 )
10 imaexg ( 𝐴𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V )
11 4 10 syl ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V )
12 vex 𝑗 ∈ V
13 vex 𝑘 ∈ V
14 12 13 elimasn ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
15 df-ov ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ )
16 8 ffvelrnda ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ) → ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ ) ∈ 𝐵 )
17 15 16 eqeltrid ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
18 14 17 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
19 18 fmpttd ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 )
20 9 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
21 rnfi ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin )
22 20 21 syl ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin )
23 14 biimpi ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
24 12 13 opelrn ( ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) )
25 24 con3i ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) )
26 23 25 anim12i ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) ) )
27 eldif ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) )
28 eldif ( ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) ) )
29 26 27 28 3imtr4i ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) )
30 ssidd ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
31 2 fvexi 0 ∈ V
32 31 a1i ( 𝜑0 ∈ V )
33 8 30 4 32 suppssr ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ ) = 0 )
34 15 33 eqtrid ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
35 29 34 sylan2 ( ( 𝜑𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
36 35 11 suppss2 ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) )
37 22 36 ssfid ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin )
38 1 2 3 11 19 37 gsumcl2 ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )