Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsum2d.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsum2d.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsum2d.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsum2d.r |
⊢ ( 𝜑 → Rel 𝐴 ) |
6 |
|
gsum2d.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
7 |
|
gsum2d.s |
⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) |
8 |
|
gsum2d.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
|
gsum2d.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
10 |
|
imaexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
12 |
|
vex |
⊢ 𝑗 ∈ V |
13 |
|
vex |
⊢ 𝑘 ∈ V |
14 |
12 13
|
elimasn |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
15 |
|
df-ov |
⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) |
16 |
8
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) ∈ 𝐵 ) |
17 |
15 16
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
18 |
14 17
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
19 |
18
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 ) |
20 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
21 |
|
rnfi |
⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin ) |
23 |
14
|
biimpi |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
24 |
12 13
|
opelrn |
⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) ) |
25 |
24
|
con3i |
⊢ ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
26 |
23 25
|
anim12i |
⊢ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
27 |
|
eldif |
⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) ) |
28 |
|
eldif |
⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
29 |
26 27 28
|
3imtr4i |
⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
30 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
31 |
2
|
fvexi |
⊢ 0 ∈ V |
32 |
31
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
33 |
8 30 4 32
|
suppssr |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
34 |
15 33
|
eqtrid |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
35 |
29 34
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
36 |
35 11
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) ) |
37 |
22 36
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) |
38 |
1 2 3 11 19 37
|
gsumcl2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |