| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsum2d.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsum2d.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsum2d.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsum2d.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsum2d.r | ⊢ ( 𝜑  →  Rel  𝐴 ) | 
						
							| 6 |  | gsum2d.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑊 ) | 
						
							| 7 |  | gsum2d.s | ⊢ ( 𝜑  →  dom  𝐴  ⊆  𝐷 ) | 
						
							| 8 |  | gsum2d.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 9 |  | gsum2d.w | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 10 |  | imaexg | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  “  { 𝑗 } )  ∈  V ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  ( 𝐴  “  { 𝑗 } )  ∈  V ) | 
						
							| 12 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 13 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 14 | 12 13 | elimasn | ⊢ ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ↔  〈 𝑗 ,  𝑘 〉  ∈  𝐴 ) | 
						
							| 15 |  | df-ov | ⊢ ( 𝑗 𝐹 𝑘 )  =  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 ) | 
						
							| 16 | 8 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  〈 𝑗 ,  𝑘 〉  ∈  𝐴 )  →  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  ∈  𝐵 ) | 
						
							| 17 | 15 16 | eqeltrid | ⊢ ( ( 𝜑  ∧  〈 𝑗 ,  𝑘 〉  ∈  𝐴 )  →  ( 𝑗 𝐹 𝑘 )  ∈  𝐵 ) | 
						
							| 18 | 14 17 | sylan2b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  “  { 𝑗 } ) )  →  ( 𝑗 𝐹 𝑘 )  ∈  𝐵 ) | 
						
							| 19 | 18 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ↦  ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴  “  { 𝑗 } ) ⟶ 𝐵 ) | 
						
							| 20 | 9 | fsuppimpd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 21 |  | rnfi | ⊢ ( ( 𝐹  supp   0  )  ∈  Fin  →  ran  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  ran  ( 𝐹  supp   0  )  ∈  Fin ) | 
						
							| 23 | 14 | biimpi | ⊢ ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  →  〈 𝑗 ,  𝑘 〉  ∈  𝐴 ) | 
						
							| 24 | 12 13 | opelrn | ⊢ ( 〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  )  →  𝑘  ∈  ran  ( 𝐹  supp   0  ) ) | 
						
							| 25 | 24 | con3i | ⊢ ( ¬  𝑘  ∈  ran  ( 𝐹  supp   0  )  →  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) | 
						
							| 26 | 23 25 | anim12i | ⊢ ( ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ∧  ¬  𝑘  ∈  ran  ( 𝐹  supp   0  ) )  →  ( 〈 𝑗 ,  𝑘 〉  ∈  𝐴  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) ) | 
						
							| 27 |  | eldif | ⊢ ( 𝑘  ∈  ( ( 𝐴  “  { 𝑗 } )  ∖  ran  ( 𝐹  supp   0  ) )  ↔  ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ∧  ¬  𝑘  ∈  ran  ( 𝐹  supp   0  ) ) ) | 
						
							| 28 |  | eldif | ⊢ ( 〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ∖  ( 𝐹  supp   0  ) )  ↔  ( 〈 𝑗 ,  𝑘 〉  ∈  𝐴  ∧  ¬  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐹  supp   0  ) ) ) | 
						
							| 29 | 26 27 28 | 3imtr4i | ⊢ ( 𝑘  ∈  ( ( 𝐴  “  { 𝑗 } )  ∖  ran  ( 𝐹  supp   0  ) )  →  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ∖  ( 𝐹  supp   0  ) ) ) | 
						
							| 30 |  | ssidd | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  ( 𝐹  supp   0  ) ) | 
						
							| 31 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 33 | 8 30 4 32 | suppssr | ⊢ ( ( 𝜑  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝐹 ‘ 〈 𝑗 ,  𝑘 〉 )  =   0  ) | 
						
							| 34 | 15 33 | eqtrid | ⊢ ( ( 𝜑  ∧  〈 𝑗 ,  𝑘 〉  ∈  ( 𝐴  ∖  ( 𝐹  supp   0  ) ) )  →  ( 𝑗 𝐹 𝑘 )  =   0  ) | 
						
							| 35 | 29 34 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝐴  “  { 𝑗 } )  ∖  ran  ( 𝐹  supp   0  ) ) )  →  ( 𝑗 𝐹 𝑘 )  =   0  ) | 
						
							| 36 | 35 11 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ↦  ( 𝑗 𝐹 𝑘 ) )  supp   0  )  ⊆  ran  ( 𝐹  supp   0  ) ) | 
						
							| 37 | 22 36 | ssfid | ⊢ ( 𝜑  →  ( ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ↦  ( 𝑗 𝐹 𝑘 ) )  supp   0  )  ∈  Fin ) | 
						
							| 38 | 1 2 3 11 19 37 | gsumcl2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  ( 𝐴  “  { 𝑗 } )  ↦  ( 𝑗 𝐹 𝑘 ) ) )  ∈  𝐵 ) |