Metamath Proof Explorer


Theorem gsum2dlem2

Description: Lemma for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
gsum2d.z 0 = ( 0g𝐺 )
gsum2d.g ( 𝜑𝐺 ∈ CMnd )
gsum2d.a ( 𝜑𝐴𝑉 )
gsum2d.r ( 𝜑 → Rel 𝐴 )
gsum2d.d ( 𝜑𝐷𝑊 )
gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
gsum2d.w ( 𝜑𝐹 finSupp 0 )
Assertion gsum2dlem2 ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 gsum2d.b 𝐵 = ( Base ‘ 𝐺 )
2 gsum2d.z 0 = ( 0g𝐺 )
3 gsum2d.g ( 𝜑𝐺 ∈ CMnd )
4 gsum2d.a ( 𝜑𝐴𝑉 )
5 gsum2d.r ( 𝜑 → Rel 𝐴 )
6 gsum2d.d ( 𝜑𝐷𝑊 )
7 gsum2d.s ( 𝜑 → dom 𝐴𝐷 )
8 gsum2d.f ( 𝜑𝐹 : 𝐴𝐵 )
9 gsum2d.w ( 𝜑𝐹 finSupp 0 )
10 9 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
11 dmfi ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin )
12 10 11 syl ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin )
13 reseq2 ( 𝑥 = ∅ → ( 𝐴𝑥 ) = ( 𝐴 ↾ ∅ ) )
14 res0 ( 𝐴 ↾ ∅ ) = ∅
15 13 14 eqtrdi ( 𝑥 = ∅ → ( 𝐴𝑥 ) = ∅ )
16 15 reseq2d ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴𝑥 ) ) = ( 𝐹 ↾ ∅ ) )
17 res0 ( 𝐹 ↾ ∅ ) = ∅
18 16 17 eqtrdi ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴𝑥 ) ) = ∅ )
19 18 oveq2d ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ∅ ) )
20 mpteq1 ( 𝑥 = ∅ → ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
21 mpt0 ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅
22 20 21 eqtrdi ( 𝑥 = ∅ → ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅ )
23 22 oveq2d ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ∅ ) )
24 19 23 eqeq12d ( 𝑥 = ∅ → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) )
25 24 imbi2d ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) ) )
26 reseq2 ( 𝑥 = 𝑦 → ( 𝐴𝑥 ) = ( 𝐴𝑦 ) )
27 26 reseq2d ( 𝑥 = 𝑦 → ( 𝐹 ↾ ( 𝐴𝑥 ) ) = ( 𝐹 ↾ ( 𝐴𝑦 ) ) )
28 27 oveq2d ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) )
29 mpteq1 ( 𝑥 = 𝑦 → ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
30 29 oveq2d ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
31 28 30 eqeq12d ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) )
32 31 imbi2d ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) )
33 reseq2 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴𝑥 ) = ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) )
34 33 reseq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ ( 𝐴𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
35 34 oveq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) )
36 mpteq1 ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
37 36 oveq2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
38 35 37 eqeq12d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) )
39 38 imbi2d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) )
40 reseq2 ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐴𝑥 ) = ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) )
41 40 reseq2d ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐹 ↾ ( 𝐴𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) )
42 41 oveq2d ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) )
43 mpteq1 ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) )
44 43 oveq2d ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )
45 42 44 eqeq12d ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) )
46 45 imbi2d ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) )
47 eqidd ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) )
48 oveq1 ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
49 eqid ( +g𝐺 ) = ( +g𝐺 )
50 3 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝐺 ∈ CMnd )
51 resexg ( 𝐴𝑉 → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V )
52 4 51 syl ( 𝜑 → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V )
53 52 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V )
54 resss ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴
55 fssres ( ( 𝐹 : 𝐴𝐵 ∧ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 )
56 8 54 55 sylancl ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 )
57 56 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 )
58 8 ffund ( 𝜑 → Fun 𝐹 )
59 funres ( Fun 𝐹 → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
60 58 59 syl ( 𝜑 → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
61 60 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) )
62 10 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐹 supp 0 ) ∈ Fin )
63 fex ( ( 𝐹 : 𝐴𝐵𝐴𝑉 ) → 𝐹 ∈ V )
64 8 4 63 syl2anc ( 𝜑𝐹 ∈ V )
65 2 fvexi 0 ∈ V
66 ressuppss ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) )
67 64 65 66 sylancl ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) )
68 67 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) )
69 62 68 ssfid ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin )
70 resexg ( 𝐹 ∈ V → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V )
71 64 70 syl ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V )
72 isfsupp ( ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) )
73 71 65 72 sylancl ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) )
74 73 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) )
75 61 69 74 mpbir2and ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 )
76 simprr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ¬ 𝑧𝑦 )
77 disjsn ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧𝑦 )
78 76 77 sylibr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
79 78 reseq2d ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( 𝐴 ↾ ∅ ) )
80 resindi ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( ( 𝐴𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) )
81 79 80 14 3eqtr3g ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐴𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) ) = ∅ )
82 resundi ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) )
83 82 a1i ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) ) )
84 1 2 49 50 53 57 75 81 83 gsumsplit ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
85 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } )
86 ssres2 ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) )
87 resabs1 ( ( 𝐴𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴𝑦 ) ) = ( 𝐹 ↾ ( 𝐴𝑦 ) ) )
88 85 86 87 mp2b ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴𝑦 ) ) = ( 𝐹 ↾ ( 𝐴𝑦 ) )
89 88 oveq2i ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) )
90 ssun2 { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } )
91 ssres2 ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) )
92 resabs1 ( ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) )
93 90 91 92 mp2b ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) )
94 93 oveq2i ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) )
95 89 94 oveq12i ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) )
96 84 95 eqtrdi ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
97 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝑦 ∈ Fin )
98 1 2 3 4 5 6 7 8 9 gsum2dlem1 ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )
99 98 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) ∧ 𝑗𝑦 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 )
100 vex 𝑧 ∈ V
101 100 a1i ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → 𝑧 ∈ V )
102 sneq ( 𝑗 = 𝑧 → { 𝑗 } = { 𝑧 } )
103 102 imaeq2d ( 𝑗 = 𝑧 → ( 𝐴 “ { 𝑗 } ) = ( 𝐴 “ { 𝑧 } ) )
104 oveq1 ( 𝑗 = 𝑧 → ( 𝑗 𝐹 𝑘 ) = ( 𝑧 𝐹 𝑘 ) )
105 103 104 mpteq12dv ( 𝑗 = 𝑧 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) )
106 105 oveq2d ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) )
107 106 eleq1d ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) )
108 107 imbi2d ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ) )
109 108 98 chvarvv ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 )
110 109 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 )
111 1 49 50 97 99 101 76 110 106 gsumunsn ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) )
112 102 reseq2d ( 𝑗 = 𝑧 → ( 𝐴 ↾ { 𝑗 } ) = ( 𝐴 ↾ { 𝑧 } ) )
113 112 reseq2d ( 𝑗 = 𝑧 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) )
114 113 oveq2d ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) )
115 106 114 eqeq12d ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
116 115 imbi2d ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) )
117 imaexg ( 𝐴𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V )
118 4 117 syl ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V )
119 vex 𝑗 ∈ V
120 vex 𝑘 ∈ V
121 119 120 elimasn ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
122 df-ov ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ )
123 8 ffvelrnda ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ) → ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ ) ∈ 𝐵 )
124 122 123 eqeltrid ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
125 121 124 sylan2b ( ( 𝜑𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 )
126 125 fmpttd ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 )
127 funmpt Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) )
128 127 a1i ( 𝜑 → Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) )
129 rnfi ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin )
130 10 129 syl ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin )
131 121 biimpi ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 )
132 119 120 opelrn ( ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) )
133 132 con3i ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) )
134 131 133 anim12i ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) ) )
135 eldif ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) )
136 eldif ( ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( ⟨ 𝑗 , 𝑘 ⟩ ∈ 𝐴 ∧ ¬ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐹 supp 0 ) ) )
137 134 135 136 3imtr4i ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) )
138 ssidd ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) )
139 65 a1i ( 𝜑0 ∈ V )
140 8 138 4 139 suppssr ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ ⟨ 𝑗 , 𝑘 ⟩ ) = 0 )
141 122 140 syl5eq ( ( 𝜑 ∧ ⟨ 𝑗 , 𝑘 ⟩ ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
142 137 141 sylan2 ( ( 𝜑𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 )
143 142 118 suppss2 ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) )
144 130 143 ssfid ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin )
145 118 mptexd ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V )
146 isfsupp ( ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) )
147 145 65 146 sylancl ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) )
148 128 144 147 mpbir2and ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 )
149 2ndconst ( 𝑗 ∈ V → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) )
150 119 149 mp1i ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) )
151 1 2 3 118 126 148 150 gsumf1o ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) )
152 1st2nd2 ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ )
153 xp1st ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st𝑥 ) ∈ { 𝑗 } )
154 elsni ( ( 1st𝑥 ) ∈ { 𝑗 } → ( 1st𝑥 ) = 𝑗 )
155 153 154 syl ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st𝑥 ) = 𝑗 )
156 155 opeq1d ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ⟨ ( 1st𝑥 ) , ( 2nd𝑥 ) ⟩ = ⟨ 𝑗 , ( 2nd𝑥 ) ⟩ )
157 152 156 eqtrd ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = ⟨ 𝑗 , ( 2nd𝑥 ) ⟩ )
158 157 fveq2d ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹𝑥 ) = ( 𝐹 ‘ ⟨ 𝑗 , ( 2nd𝑥 ) ⟩ ) )
159 df-ov ( 𝑗 𝐹 ( 2nd𝑥 ) ) = ( 𝐹 ‘ ⟨ 𝑗 , ( 2nd𝑥 ) ⟩ )
160 158 159 eqtr4di ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹𝑥 ) = ( 𝑗 𝐹 ( 2nd𝑥 ) ) )
161 160 mpteq2ia ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd𝑥 ) ) )
162 8 feqmptd ( 𝜑𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )
163 162 reseq1d ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) )
164 resss ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴
165 resmpt ( ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴 → ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹𝑥 ) ) )
166 164 165 ax-mp ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹𝑥 ) )
167 ressn ( 𝐴 ↾ { 𝑗 } ) = ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) )
168 167 mpteq1i ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹𝑥 ) )
169 166 168 eqtri ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹𝑥 ) )
170 163 169 eqtrdi ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹𝑥 ) ) )
171 xp2nd ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 2nd𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) )
172 171 adantl ( ( 𝜑𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) → ( 2nd𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) )
173 fo2nd 2nd : V –onto→ V
174 fof ( 2nd : V –onto→ V → 2nd : V ⟶ V )
175 173 174 mp1i ( 𝜑 → 2nd : V ⟶ V )
176 175 feqmptd ( 𝜑 → 2nd = ( 𝑥 ∈ V ↦ ( 2nd𝑥 ) ) )
177 176 reseq1d ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( ( 𝑥 ∈ V ↦ ( 2nd𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) )
178 ssv ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V
179 resmpt ( ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V → ( ( 𝑥 ∈ V ↦ ( 2nd𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd𝑥 ) ) )
180 178 179 ax-mp ( ( 𝑥 ∈ V ↦ ( 2nd𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd𝑥 ) )
181 177 180 eqtrdi ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd𝑥 ) ) )
182 eqidd ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) )
183 oveq2 ( 𝑘 = ( 2nd𝑥 ) → ( 𝑗 𝐹 𝑘 ) = ( 𝑗 𝐹 ( 2nd𝑥 ) ) )
184 172 181 182 183 fmptco ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd𝑥 ) ) ) )
185 161 170 184 3eqtr4a ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) )
186 185 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) )
187 151 186 eqtr4d ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) )
188 116 187 chvarvv ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) )
189 188 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) )
190 189 oveq2d ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
191 111 190 eqtrd ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) )
192 96 191 eqeq12d ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) )
193 48 192 syl5ibr ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) )
194 193 expcom ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) )
195 194 a2d ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) )
196 25 32 39 46 47 195 findcard2s ( dom ( 𝐹 supp 0 ) ∈ Fin → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) )
197 12 196 mpcom ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) )