Metamath Proof Explorer


Theorem gsumadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumadd.b 𝐵 = ( Base ‘ 𝐺 )
gsumadd.z 0 = ( 0g𝐺 )
gsumadd.p + = ( +g𝐺 )
gsumadd.g ( 𝜑𝐺 ∈ CMnd )
gsumadd.a ( 𝜑𝐴𝑉 )
gsumadd.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumadd.h ( 𝜑𝐻 : 𝐴𝐵 )
gsumadd.fn ( 𝜑𝐹 finSupp 0 )
gsumadd.hn ( 𝜑𝐻 finSupp 0 )
Assertion gsumadd ( 𝜑 → ( 𝐺 Σg ( 𝐹f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsumadd.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumadd.z 0 = ( 0g𝐺 )
3 gsumadd.p + = ( +g𝐺 )
4 gsumadd.g ( 𝜑𝐺 ∈ CMnd )
5 gsumadd.a ( 𝜑𝐴𝑉 )
6 gsumadd.f ( 𝜑𝐹 : 𝐴𝐵 )
7 gsumadd.h ( 𝜑𝐻 : 𝐴𝐵 )
8 gsumadd.fn ( 𝜑𝐹 finSupp 0 )
9 gsumadd.hn ( 𝜑𝐻 finSupp 0 )
10 eqid ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 )
11 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
12 4 11 syl ( 𝜑𝐺 ∈ Mnd )
13 1 submid ( 𝐺 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) )
14 12 13 syl ( 𝜑𝐵 ∈ ( SubMnd ‘ 𝐺 ) )
15 ssid 𝐵𝐵
16 1 10 cntzcmn ( ( 𝐺 ∈ CMnd ∧ 𝐵𝐵 ) → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 )
17 4 15 16 sylancl ( 𝜑 → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 )
18 15 17 sseqtrrid ( 𝜑𝐵 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) )
19 1 2 3 10 12 5 8 9 14 18 6 7 gsumzadd ( 𝜑 → ( 𝐺 Σg ( 𝐹f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) )