Step |
Hyp |
Ref |
Expression |
1 |
|
gsumadd.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumadd.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumadd.p |
⊢ + = ( +g ‘ 𝐺 ) |
4 |
|
gsumadd.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
5 |
|
gsumadd.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
gsumadd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
gsumadd.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
8 |
|
gsumadd.fn |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
9 |
|
gsumadd.hn |
⊢ ( 𝜑 → 𝐻 finSupp 0 ) |
10 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
11 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
13 |
1
|
submid |
⊢ ( 𝐺 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ) |
15 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
16 |
1 10
|
cntzcmn |
⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵 ) → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 ) |
17 |
4 15 16
|
sylancl |
⊢ ( 𝜑 → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 ) |
18 |
15 17
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) ) |
19 |
1 2 3 10 12 5 8 9 14 18 6 7
|
gsumzadd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |