| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumbagdiag.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | gsumbagdiag.s | ⊢ 𝑆  =  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 } | 
						
							| 3 |  | gsumbagdiag.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 4 |  | gsumbagdiag.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | gsumbagdiag.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 6 |  | gsumbagdiag.x | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 8 | 1 | psrbaglefi | ⊢ ( 𝐹  ∈  𝐷  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  Fin ) | 
						
							| 9 | 3 8 | syl | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 }  ∈  Fin ) | 
						
							| 10 | 2 9 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  Fin ) | 
						
							| 11 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 12 | 1 11 | rab2ex | ⊢ { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑆 )  →  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ∈  V ) | 
						
							| 14 |  | xpfi | ⊢ ( ( 𝑆  ∈  Fin  ∧  𝑆  ∈  Fin )  →  ( 𝑆  ×  𝑆 )  ∈  Fin ) | 
						
							| 15 | 10 10 14 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ×  𝑆 )  ∈  Fin ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑗  ∈  𝑆 ) | 
						
							| 17 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ( 𝑘  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑘 ) } ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑘  ∈  𝑆 ) | 
						
							| 19 |  | brxp | ⊢ ( 𝑗 ( 𝑆  ×  𝑆 ) 𝑘  ↔  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  𝑆 ) ) | 
						
							| 20 | 16 18 19 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  𝑗 ( 𝑆  ×  𝑆 ) 𝑘 ) | 
						
							| 21 | 20 | pm2.24d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) )  →  ( ¬  𝑗 ( 𝑆  ×  𝑆 ) 𝑘  →  𝑋  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 22 | 21 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ∧  ¬  𝑗 ( 𝑆  ×  𝑆 ) 𝑘 ) )  →  𝑋  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 23 | 1 2 3 | gsumbagdiaglem | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑘 ) } ) )  →  ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } ) ) | 
						
							| 24 | 17 23 | impbida | ⊢ ( 𝜑  →  ( ( 𝑗  ∈  𝑆  ∧  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) } )  ↔  ( 𝑘  ∈  𝑆  ∧  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑘 ) } ) ) ) | 
						
							| 25 | 4 7 5 10 13 6 15 22 10 24 | gsumcom2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝑆 ,  𝑘  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑗 ) }  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝑆 ,  𝑗  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑘 ) }  ↦  𝑋 ) ) ) |