| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumbagdiag.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 2 |  | gsumbagdiag.s | ⊢ 𝑆  =  { 𝑦  ∈  𝐷  ∣  𝑦  ∘r   ≤  𝐹 } | 
						
							| 3 |  | gsumbagdiag.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐷 ) | 
						
							| 4 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑥  =  𝑌  →  ( 𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 )  ↔  𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) ) ) | 
						
							| 6 | 5 | elrab | ⊢ ( 𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) }  ↔  ( 𝑌  ∈  𝐷  ∧  𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) ) ) | 
						
							| 7 | 4 6 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑌  ∈  𝐷  ∧  𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) ) ) | 
						
							| 8 | 7 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  ∈  𝐷 ) | 
						
							| 9 | 7 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) ) | 
						
							| 10 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝐹  ∈  𝐷 ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  ∈  𝑆 ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  ∘r   ≤  𝐹  ↔  𝑋  ∘r   ≤  𝐹 ) ) | 
						
							| 13 | 12 2 | elrab2 | ⊢ ( 𝑋  ∈  𝑆  ↔  ( 𝑋  ∈  𝐷  ∧  𝑋  ∘r   ≤  𝐹 ) ) | 
						
							| 14 | 11 13 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑋  ∈  𝐷  ∧  𝑋  ∘r   ≤  𝐹 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  ∈  𝐷 ) | 
						
							| 16 | 1 | psrbagf | ⊢ ( 𝑋  ∈  𝐷  →  𝑋 : 𝐼 ⟶ ℕ0 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋 : 𝐼 ⟶ ℕ0 ) | 
						
							| 18 | 14 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  ∘r   ≤  𝐹 ) | 
						
							| 19 | 1 | psrbagcon | ⊢ ( ( 𝐹  ∈  𝐷  ∧  𝑋 : 𝐼 ⟶ ℕ0  ∧  𝑋  ∘r   ≤  𝐹 )  →  ( ( 𝐹  ∘f   −  𝑋 )  ∈  𝐷  ∧  ( 𝐹  ∘f   −  𝑋 )  ∘r   ≤  𝐹 ) ) | 
						
							| 20 | 10 17 18 19 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( ( 𝐹  ∘f   −  𝑋 )  ∈  𝐷  ∧  ( 𝐹  ∘f   −  𝑋 )  ∘r   ≤  𝐹 ) ) | 
						
							| 21 | 20 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝐹  ∘f   −  𝑋 )  ∘r   ≤  𝐹 ) | 
						
							| 22 | 1 | psrbagf | ⊢ ( 𝐹  ∈  𝐷  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 23 | 10 22 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝐹 : 𝐼 ⟶ ℕ0 ) | 
						
							| 24 | 23 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝐹  Fn  𝐼 ) | 
						
							| 25 | 10 24 | fndmexd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝐼  ∈  V ) | 
						
							| 26 | 1 | psrbagf | ⊢ ( 𝑌  ∈  𝐷  →  𝑌 : 𝐼 ⟶ ℕ0 ) | 
						
							| 27 | 8 26 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌 : 𝐼 ⟶ ℕ0 ) | 
						
							| 28 | 20 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝐹  ∘f   −  𝑋 )  ∈  𝐷 ) | 
						
							| 29 | 1 | psrbagf | ⊢ ( ( 𝐹  ∘f   −  𝑋 )  ∈  𝐷  →  ( 𝐹  ∘f   −  𝑋 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝐹  ∘f   −  𝑋 ) : 𝐼 ⟶ ℕ0 ) | 
						
							| 31 |  | nn0re | ⊢ ( 𝑢  ∈  ℕ0  →  𝑢  ∈  ℝ ) | 
						
							| 32 |  | nn0re | ⊢ ( 𝑣  ∈  ℕ0  →  𝑣  ∈  ℝ ) | 
						
							| 33 |  | nn0re | ⊢ ( 𝑤  ∈  ℕ0  →  𝑤  ∈  ℝ ) | 
						
							| 34 |  | letr | ⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑣  ∈  ℝ  ∧  𝑤  ∈  ℝ )  →  ( ( 𝑢  ≤  𝑣  ∧  𝑣  ≤  𝑤 )  →  𝑢  ≤  𝑤 ) ) | 
						
							| 35 | 31 32 33 34 | syl3an | ⊢ ( ( 𝑢  ∈  ℕ0  ∧  𝑣  ∈  ℕ0  ∧  𝑤  ∈  ℕ0 )  →  ( ( 𝑢  ≤  𝑣  ∧  𝑣  ≤  𝑤 )  →  𝑢  ≤  𝑤 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  ( 𝑢  ∈  ℕ0  ∧  𝑣  ∈  ℕ0  ∧  𝑤  ∈  ℕ0 ) )  →  ( ( 𝑢  ≤  𝑣  ∧  𝑣  ≤  𝑤 )  →  𝑢  ≤  𝑤 ) ) | 
						
							| 37 | 25 27 30 23 36 | caoftrn | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( ( 𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 )  ∧  ( 𝐹  ∘f   −  𝑋 )  ∘r   ≤  𝐹 )  →  𝑌  ∘r   ≤  𝐹 ) ) | 
						
							| 38 | 9 21 37 | mp2and | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  ∘r   ≤  𝐹 ) | 
						
							| 39 |  | breq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∘r   ≤  𝐹  ↔  𝑌  ∘r   ≤  𝐹 ) ) | 
						
							| 40 | 39 2 | elrab2 | ⊢ ( 𝑌  ∈  𝑆  ↔  ( 𝑌  ∈  𝐷  ∧  𝑌  ∘r   ≤  𝐹 ) ) | 
						
							| 41 | 8 38 40 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  ∈  𝑆 ) | 
						
							| 42 |  | breq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 )  ↔  𝑋  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 ) ) ) | 
						
							| 43 | 17 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 44 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 45 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 46 |  | nn0re | ⊢ ( ( 𝑋 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑋 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 47 |  | nn0re | ⊢ ( ( 𝑌 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝑌 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 48 |  | nn0re | ⊢ ( ( 𝐹 ‘ 𝑧 )  ∈  ℕ0  →  ( 𝐹 ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 49 |  | leaddsub2 | ⊢ ( ( ( 𝑋 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝑌 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ )  →  ( ( ( 𝑋 ‘ 𝑧 )  +  ( 𝑌 ‘ 𝑧 ) )  ≤  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) ) ) ) | 
						
							| 50 |  | leaddsub | ⊢ ( ( ( 𝑋 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝑌 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ )  →  ( ( ( 𝑋 ‘ 𝑧 )  +  ( 𝑌 ‘ 𝑧 ) )  ≤  ( 𝐹 ‘ 𝑧 )  ↔  ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 51 | 49 50 | bitr3d | ⊢ ( ( ( 𝑋 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝑌 ‘ 𝑧 )  ∈  ℝ  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℝ )  →  ( ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) )  ↔  ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 52 | 46 47 48 51 | syl3an | ⊢ ( ( ( 𝑋 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝑌 ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝐹 ‘ 𝑧 )  ∈  ℕ0 )  →  ( ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) )  ↔  ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 53 | 43 44 45 52 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) )  ↔  ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 54 | 53 | ralbidva | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( ∀ 𝑧  ∈  𝐼 ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) )  ↔  ∀ 𝑧  ∈  𝐼 ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 55 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 56 | 27 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑌 ‘ 𝑧 ) ) ) | 
						
							| 57 | 17 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  Fn  𝐼 ) | 
						
							| 58 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 59 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 60 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑋 ‘ 𝑧 )  =  ( 𝑋 ‘ 𝑧 ) ) | 
						
							| 61 | 24 57 25 25 58 59 60 | offval | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝐹  ∘f   −  𝑋 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) ) ) ) | 
						
							| 62 | 25 44 55 56 61 | ofrfval2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 )  ↔  ∀ 𝑧  ∈  𝐼 ( 𝑌 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑋 ‘ 𝑧 ) ) ) ) | 
						
							| 63 |  | ovexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 64 | 17 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  =  ( 𝑧  ∈  𝐼  ↦  ( 𝑋 ‘ 𝑧 ) ) ) | 
						
							| 65 | 27 | ffnd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑌  Fn  𝐼 ) | 
						
							| 66 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  ∧  𝑧  ∈  𝐼 )  →  ( 𝑌 ‘ 𝑧 )  =  ( 𝑌 ‘ 𝑧 ) ) | 
						
							| 67 | 24 65 25 25 58 59 66 | offval | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝐹  ∘f   −  𝑌 )  =  ( 𝑧  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 68 | 25 43 63 64 67 | ofrfval2 | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑋  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 )  ↔  ∀ 𝑧  ∈  𝐼 ( 𝑋 ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑧 )  −  ( 𝑌 ‘ 𝑧 ) ) ) ) | 
						
							| 69 | 54 62 68 | 3bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑌  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 )  ↔  𝑋  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 ) ) ) | 
						
							| 70 | 9 69 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 ) ) | 
						
							| 71 | 42 15 70 | elrabd | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  𝑋  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 ) } ) | 
						
							| 72 | 41 71 | jca | ⊢ ( ( 𝜑  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑋 ) } ) )  →  ( 𝑌  ∈  𝑆  ∧  𝑋  ∈  { 𝑥  ∈  𝐷  ∣  𝑥  ∘r   ≤  ( 𝐹  ∘f   −  𝑌 ) } ) ) |