Metamath Proof Explorer


Theorem gsumccatsymgsn

Description: Homomorphic property of composites of permutations with a singleton. (Contributed by AV, 20-Jan-2019)

Ref Expression
Hypotheses gsumccatsymgsn.g 𝐺 = ( SymGrp ‘ 𝐴 )
gsumccatsymgsn.b 𝐵 = ( Base ‘ 𝐺 )
Assertion gsumccatsymgsn ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ ⟨“ 𝑍 ”⟩ ) ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) )

Proof

Step Hyp Ref Expression
1 gsumccatsymgsn.g 𝐺 = ( SymGrp ‘ 𝐴 )
2 gsumccatsymgsn.b 𝐵 = ( Base ‘ 𝐺 )
3 1 symggrp ( 𝐴𝑉𝐺 ∈ Grp )
4 3 grpmndd ( 𝐴𝑉𝐺 ∈ Mnd )
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 2 5 gsumccatsn ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ ⟨“ 𝑍 ”⟩ ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g𝐺 ) 𝑍 ) )
7 4 6 syl3an1 ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ ⟨“ 𝑍 ”⟩ ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g𝐺 ) 𝑍 ) )
8 4 3ad2ant1 ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → 𝐺 ∈ Mnd )
9 simp2 ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → 𝑊 ∈ Word 𝐵 )
10 2 gsumwcl ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 )
11 8 9 10 syl2anc ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 )
12 simp3 ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → 𝑍𝐵 )
13 1 2 5 symgov ( ( ( 𝐺 Σg 𝑊 ) ∈ 𝐵𝑍𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) )
14 11 12 13 syl2anc ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) )
15 7 14 eqtrd ( ( 𝐴𝑉𝑊 ∈ Word 𝐵𝑍𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ ⟨“ 𝑍 ”⟩ ) ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) )