Step |
Hyp |
Ref |
Expression |
1 |
|
gsumccatsymgsn.g |
⊢ 𝐺 = ( SymGrp ‘ 𝐴 ) |
2 |
|
gsumccatsymgsn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
1
|
symggrp |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Grp ) |
4 |
3
|
grpmndd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ Mnd ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
2 5
|
gsumccatsn |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) |
7 |
4 6
|
syl3an1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) ) |
8 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
9 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑊 ∈ Word 𝐵 ) |
10 |
2
|
gsumwcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ) |
12 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑍 ∈ 𝐵 ) |
13 |
1 2 5
|
symgov |
⊢ ( ( ( 𝐺 Σg 𝑊 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |
14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ( 𝐺 Σg 𝑊 ) ( +g ‘ 𝐺 ) 𝑍 ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |
15 |
7 14
|
eqtrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑊 ∈ Word 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑊 ++ 〈“ 𝑍 ”〉 ) ) = ( ( 𝐺 Σg 𝑊 ) ∘ 𝑍 ) ) |