Metamath Proof Explorer


Theorem gsumcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b 𝐵 = ( Base ‘ 𝐺 )
gsumcl.z 0 = ( 0g𝐺 )
gsumcl.g ( 𝜑𝐺 ∈ CMnd )
gsumcl.a ( 𝜑𝐴𝑉 )
gsumcl.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumcl.w ( 𝜑𝐹 finSupp 0 )
Assertion gsumcl ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsumcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumcl.z 0 = ( 0g𝐺 )
3 gsumcl.g ( 𝜑𝐺 ∈ CMnd )
4 gsumcl.a ( 𝜑𝐴𝑉 )
5 gsumcl.f ( 𝜑𝐹 : 𝐴𝐵 )
6 gsumcl.w ( 𝜑𝐹 finSupp 0 )
7 6 fsuppimpd ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
8 1 2 3 4 5 7 gsumcl2 ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )