Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumcl
Metamath Proof Explorer
Description: Closure of a finite group sum. (Contributed by Mario Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 24-Apr-2016) (Revised by AV , 3-Jun-2019)
Ref
Expression
Hypotheses
gsumcl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
gsumcl.z
⊢ 0 = ( 0g ‘ 𝐺 )
gsumcl.g
⊢ ( 𝜑 → 𝐺 ∈ CMnd )
gsumcl.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
gsumcl.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 )
gsumcl.w
⊢ ( 𝜑 → 𝐹 finSupp 0 )
Assertion
gsumcl
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
gsumcl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
gsumcl.z
⊢ 0 = ( 0g ‘ 𝐺 )
3
gsumcl.g
⊢ ( 𝜑 → 𝐺 ∈ CMnd )
4
gsumcl.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
5
gsumcl.f
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 )
6
gsumcl.w
⊢ ( 𝜑 → 𝐹 finSupp 0 )
7
6
fsuppimpd
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
8
1 2 3 4 5 7
gsumcl2
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 )