Step |
Hyp |
Ref |
Expression |
1 |
|
gsumxp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumxp.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumxp.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsumxp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsumxp.r |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
gsumcom.f |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
gsumcom.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
8 |
|
gsumcom.n |
⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) |
9 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
10 |
|
ancom |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) ) |
12 |
1 2 3 4 9 6 7 8 5 11
|
gsumcom2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) |