Step |
Hyp |
Ref |
Expression |
1 |
|
gsumcom3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumcom3.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsumcom3.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsumcom3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
gsumcom3.r |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
6 |
|
gsumcom3.f |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) → 𝑋 ∈ 𝐵 ) |
7 |
|
gsumcom3.u |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
8 |
|
gsumcom3.n |
⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) → 𝑋 = 0 ) |
9 |
1 2 3 4 5 6 7 8
|
gsumcom |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐶 ∈ 𝑊 ) |
11 |
1 2 3 4 10 6 7 8
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 , 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) ) |
12 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) |
13 |
6
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
14 |
|
cnvfi |
⊢ ( 𝑈 ∈ Fin → ◡ 𝑈 ∈ Fin ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → ◡ 𝑈 ∈ Fin ) |
16 |
|
ancom |
⊢ ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ↔ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ) |
17 |
|
vex |
⊢ 𝑘 ∈ V |
18 |
|
vex |
⊢ 𝑗 ∈ V |
19 |
17 18
|
brcnv |
⊢ ( 𝑘 ◡ 𝑈 𝑗 ↔ 𝑗 𝑈 𝑘 ) |
20 |
19
|
notbii |
⊢ ( ¬ 𝑘 ◡ 𝑈 𝑗 ↔ ¬ 𝑗 𝑈 𝑘 ) |
21 |
16 20
|
anbi12i |
⊢ ( ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑘 ◡ 𝑈 𝑗 ) ↔ ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐶 ) ∧ ¬ 𝑗 𝑈 𝑘 ) ) |
22 |
21 8
|
sylan2b |
⊢ ( ( 𝜑 ∧ ( ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐴 ) ∧ ¬ 𝑘 ◡ 𝑈 𝑗 ) ) → 𝑋 = 0 ) |
23 |
1 2 3 5 12 13 15 22
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐶 , 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |
24 |
9 11 23
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ ( 𝐺 Σg ( 𝑗 ∈ 𝐴 ↦ 𝑋 ) ) ) ) ) |