| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumcom3.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumcom3.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsumcom3.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsumcom3.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsumcom3.r | ⊢ ( 𝜑  →  𝐶  ∈  𝑊 ) | 
						
							| 6 |  | gsumcom3.f | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | gsumcom3.u | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 8 |  | gsumcom3.n | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  ∧  ¬  𝑗 𝑈 𝑘 ) )  →  𝑋  =   0  ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | gsumcom | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶 ,  𝑗  ∈  𝐴  ↦  𝑋 ) ) ) | 
						
							| 10 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  𝐶  ∈  𝑊 ) | 
						
							| 11 | 1 2 3 4 10 6 7 8 | gsum2d2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴 ,  𝑘  ∈  𝐶  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) ) ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐶 )  →  𝐴  ∈  𝑉 ) | 
						
							| 13 | 6 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  𝐶  ∧  𝑗  ∈  𝐴 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 14 |  | cnvfi | ⊢ ( 𝑈  ∈  Fin  →  ◡ 𝑈  ∈  Fin ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝜑  →  ◡ 𝑈  ∈  Fin ) | 
						
							| 16 |  | ancom | ⊢ ( ( 𝑘  ∈  𝐶  ∧  𝑗  ∈  𝐴 )  ↔  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) | 
						
							| 17 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 18 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 19 | 17 18 | brcnv | ⊢ ( 𝑘 ◡ 𝑈 𝑗  ↔  𝑗 𝑈 𝑘 ) | 
						
							| 20 | 19 | notbii | ⊢ ( ¬  𝑘 ◡ 𝑈 𝑗  ↔  ¬  𝑗 𝑈 𝑘 ) | 
						
							| 21 | 16 20 | anbi12i | ⊢ ( ( ( 𝑘  ∈  𝐶  ∧  𝑗  ∈  𝐴 )  ∧  ¬  𝑘 ◡ 𝑈 𝑗 )  ↔  ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  ∧  ¬  𝑗 𝑈 𝑘 ) ) | 
						
							| 22 | 21 8 | sylan2b | ⊢ ( ( 𝜑  ∧  ( ( 𝑘  ∈  𝐶  ∧  𝑗  ∈  𝐴 )  ∧  ¬  𝑘 ◡ 𝑈 𝑗 ) )  →  𝑋  =   0  ) | 
						
							| 23 | 1 2 3 5 12 13 15 22 | gsum2d2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐶 ,  𝑗  ∈  𝐴  ↦  𝑋 ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  𝑋 ) ) ) ) ) | 
						
							| 24 | 9 11 23 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  𝑋 ) ) ) ) ) |