| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumcom3fi.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumcom3fi.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 3 |  | gsumcom3fi.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | gsumcom3fi.r | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 5 |  | gsumcom3fi.f | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 7 |  | xpfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐶  ∈  Fin )  →  ( 𝐴  ×  𝐶 )  ∈  Fin ) | 
						
							| 8 | 3 4 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ×  𝐶 )  ∈  Fin ) | 
						
							| 9 |  | brxp | ⊢ ( 𝑗 ( 𝐴  ×  𝐶 ) 𝑘  ↔  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) ) | 
						
							| 10 | 9 | biimpri | ⊢ ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  →  𝑗 ( 𝐴  ×  𝐶 ) 𝑘 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  𝑗 ( 𝐴  ×  𝐶 ) 𝑘 ) | 
						
							| 12 | 11 | pm2.24d | ⊢ ( ( 𝜑  ∧  ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 ) )  →  ( ¬  𝑗 ( 𝐴  ×  𝐶 ) 𝑘  →  𝑋  =  ( 0g ‘ 𝐺 ) ) ) | 
						
							| 13 | 12 | impr | ⊢ ( ( 𝜑  ∧  ( ( 𝑗  ∈  𝐴  ∧  𝑘  ∈  𝐶 )  ∧  ¬  𝑗 ( 𝐴  ×  𝐶 ) 𝑘 ) )  →  𝑋  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 14 | 1 6 2 3 4 5 8 13 | gsumcom3 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  𝑋 ) ) ) )  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐶  ↦  ( 𝐺  Σg  ( 𝑗  ∈  𝐴  ↦  𝑋 ) ) ) ) ) |