Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumconstf.k | ⊢ Ⅎ 𝑘 𝑋 | |
gsumconstf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
gsumconstf.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
Assertion | gsumconstf | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumconstf.k | ⊢ Ⅎ 𝑘 𝑋 | |
2 | gsumconstf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
3 | gsumconstf.m | ⊢ · = ( .g ‘ 𝐺 ) | |
4 | nfcv | ⊢ Ⅎ 𝑙 𝑋 | |
5 | eqidd | ⊢ ( 𝑘 = 𝑙 → 𝑋 = 𝑋 ) | |
6 | 4 1 5 | cbvmpt | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) |
7 | 6 | oveq2i | ⊢ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) ) |
8 | 2 3 | gsumconst | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
9 | 7 8 | eqtrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |