Metamath Proof Explorer


Theorem gsumconstf

Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Hypotheses gsumconstf.k 𝑘 𝑋
gsumconstf.b 𝐵 = ( Base ‘ 𝐺 )
gsumconstf.m · = ( .g𝐺 )
Assertion gsumconstf ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵 ) → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 gsumconstf.k 𝑘 𝑋
2 gsumconstf.b 𝐵 = ( Base ‘ 𝐺 )
3 gsumconstf.m · = ( .g𝐺 )
4 nfcv 𝑙 𝑋
5 eqidd ( 𝑘 = 𝑙𝑋 = 𝑋 )
6 4 1 5 cbvmpt ( 𝑘𝐴𝑋 ) = ( 𝑙𝐴𝑋 )
7 6 oveq2i ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( 𝐺 Σg ( 𝑙𝐴𝑋 ) )
8 2 3 gsumconst ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵 ) → ( 𝐺 Σg ( 𝑙𝐴𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) )
9 7 8 eqtrid ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵 ) → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) )