Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumconstf.k | ⊢ Ⅎ 𝑘 𝑋 | |
| gsumconstf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| gsumconstf.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| Assertion | gsumconstf | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumconstf.k | ⊢ Ⅎ 𝑘 𝑋 | |
| 2 | gsumconstf.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | gsumconstf.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑙 𝑋 | |
| 5 | eqidd | ⊢ ( 𝑘 = 𝑙 → 𝑋 = 𝑋 ) | |
| 6 | 4 1 5 | cbvmpt | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) |
| 7 | 6 | oveq2i | ⊢ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) ) |
| 8 | 2 3 | gsumconst | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑙 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |
| 9 | 7 8 | eqtrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( ( ♯ ‘ 𝐴 ) · 𝑋 ) ) |