| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumdixp.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | gsumdixp.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 3 |  | gsumdixp.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | gsumdixp.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 5 |  | gsumdixp.j | ⊢ ( 𝜑  →  𝐽  ∈  𝑊 ) | 
						
							| 6 |  | gsumdixp.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 7 |  | gsumdixp.x | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | gsumdixp.y | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐽 )  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | gsumdixp.xf | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑋 )  finSupp   0  ) | 
						
							| 10 |  | gsumdixp.yf | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  𝑌 )  finSupp   0  ) | 
						
							| 11 | 6 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐼 )  →  𝐽  ∈  𝑊 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑅  ∈  Ring ) | 
						
							| 14 | 7 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑋 ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 15 |  | simpl | ⊢ ( ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 )  →  𝑖  ∈  𝐼 ) | 
						
							| 16 |  | ffvelcdm | ⊢ ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) : 𝐼 ⟶ 𝐵  ∧  𝑖  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ∈  𝐵 ) | 
						
							| 17 | 14 15 16 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ∈  𝐵 ) | 
						
							| 18 | 8 | fmpttd | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐽  ↦  𝑌 ) : 𝐽 ⟶ 𝐵 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 )  →  𝑗  ∈  𝐽 ) | 
						
							| 20 |  | ffvelcdm | ⊢ ( ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) : 𝐽 ⟶ 𝐵  ∧  𝑗  ∈  𝐽 )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  ∈  𝐵 ) | 
						
							| 21 | 18 19 20 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  ∈  𝐵 ) | 
						
							| 22 | 1 2 13 17 21 | ringcld | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  ∈  𝐵 ) | 
						
							| 23 | 9 | fsuppimpd | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∈  Fin ) | 
						
							| 24 | 10 | fsuppimpd | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  )  ∈  Fin ) | 
						
							| 25 |  | xpfi | ⊢ ( ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∈  Fin  ∧  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  )  ∈  Fin )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  ∈  Fin ) | 
						
							| 26 | 23 24 25 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  ∈  Fin ) | 
						
							| 27 |  | ianor | ⊢ ( ¬  ( 𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∧  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  ↔  ( ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∨  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 28 |  | brxp | ⊢ ( 𝑖 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) 𝑗  ↔  ( 𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∧  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 29 | 27 28 | xchnxbir | ⊢ ( ¬  𝑖 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) 𝑗  ↔  ( ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∨  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 30 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑖  ∈  𝐼 ) | 
						
							| 31 |  | eldif | ⊢ ( 𝑖  ∈  ( 𝐼  ∖  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  ↔  ( 𝑖  ∈  𝐼  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) ) ) | 
						
							| 32 | 31 | biimpri | ⊢ ( ( 𝑖  ∈  𝐼  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  𝑖  ∈  ( 𝐼  ∖  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) ) ) | 
						
							| 33 | 30 32 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  𝑖  ∈  ( 𝐼  ∖  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) ) ) | 
						
							| 34 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( 𝑥  ∈  𝐼  ↦  𝑋 ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 35 |  | ssidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ⊆  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) ) | 
						
							| 36 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝐼  ∈  𝑉 ) | 
						
							| 37 | 3 | fvexi | ⊢  0   ∈  V | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →   0   ∈  V ) | 
						
							| 39 | 34 35 36 38 | suppssr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  𝑖  ∈  ( 𝐼  ∖  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) ) )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  =   0  ) | 
						
							| 40 | 33 39 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  =   0  ) | 
						
							| 41 | 40 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =  (  0   ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) | 
						
							| 42 | 1 2 3 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  ∈  𝐵 )  →  (  0   ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 43 | 13 21 42 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  (  0   ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  (  0   ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 45 | 41 44 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 46 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝑗  ∈  𝐽 ) | 
						
							| 47 |  | eldif | ⊢ ( 𝑗  ∈  ( 𝐽  ∖  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  ↔  ( 𝑗  ∈  𝐽  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 48 | 47 | biimpri | ⊢ ( ( 𝑗  ∈  𝐽  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  𝑗  ∈  ( 𝐽  ∖  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 49 | 46 48 | sylan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  𝑗  ∈  ( 𝐽  ∖  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) ) | 
						
							| 50 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( 𝑦  ∈  𝐽  ↦  𝑌 ) : 𝐽 ⟶ 𝐵 ) | 
						
							| 51 |  | ssidd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  )  ⊆  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) | 
						
							| 52 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  𝐽  ∈  𝑊 ) | 
						
							| 53 | 50 51 52 38 | suppssr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  𝑗  ∈  ( 𝐽  ∖  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  =   0  ) | 
						
							| 54 | 49 53 | syldan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  =   0  ) | 
						
							| 55 | 54 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·   0  ) ) | 
						
							| 56 | 1 2 3 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ∈  𝐵 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·   0  )  =   0  ) | 
						
							| 57 | 13 17 56 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·   0  )  =   0  ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·   0  )  =   0  ) | 
						
							| 59 | 55 58 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 60 | 45 59 | jaodan | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ( ¬  𝑖  ∈  ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ∨  ¬  𝑗  ∈  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 61 | 29 60 | sylan2b | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 ) )  ∧  ¬  𝑖 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) 𝑗 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 62 | 61 | anasss | ⊢ ( ( 𝜑  ∧  ( ( 𝑖  ∈  𝐼  ∧  𝑗  ∈  𝐽 )  ∧  ¬  𝑖 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 )  supp   0  )  ×  ( ( 𝑦  ∈  𝐽  ↦  𝑌 )  supp   0  ) ) 𝑗 ) )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =   0  ) | 
						
							| 63 | 1 3 11 4 12 22 26 62 | gsum2d2 | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑖  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) ) ) ) | 
						
							| 64 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 ) | 
						
							| 65 |  | nfcv | ⊢ Ⅎ 𝑥  · | 
						
							| 66 |  | nfcv | ⊢ Ⅎ 𝑥 ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) | 
						
							| 67 | 64 65 66 | nfov | ⊢ Ⅎ 𝑥 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 68 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 ) | 
						
							| 69 |  | nfcv | ⊢ Ⅎ 𝑦  · | 
						
							| 70 |  | nffvmpt1 | ⊢ Ⅎ 𝑦 ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) | 
						
							| 71 | 68 69 70 | nfov | ⊢ Ⅎ 𝑦 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 72 |  | nfcv | ⊢ Ⅎ 𝑖 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) | 
						
							| 73 |  | nfcv | ⊢ Ⅎ 𝑗 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑖  =  𝑥  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  =  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑗  =  𝑦  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 )  =  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) | 
						
							| 76 | 74 75 | oveqan12d | ⊢ ( ( 𝑖  =  𝑥  ∧  𝑗  =  𝑦 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) | 
						
							| 77 | 67 71 72 73 76 | cbvmpo | ⊢ ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) )  =  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) | 
						
							| 78 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  𝑥  ∈  𝐼 ) | 
						
							| 79 | 7 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  𝑋  ∈  𝐵 ) | 
						
							| 80 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  𝑋 )  =  ( 𝑥  ∈  𝐼  ↦  𝑋 ) | 
						
							| 81 | 80 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑋  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  =  𝑋 ) | 
						
							| 82 | 78 79 81 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  =  𝑋 ) | 
						
							| 83 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  𝑦  ∈  𝐽 ) | 
						
							| 84 |  | eqid | ⊢ ( 𝑦  ∈  𝐽  ↦  𝑌 )  =  ( 𝑦  ∈  𝐽  ↦  𝑌 ) | 
						
							| 85 | 84 | fvmpt2 | ⊢ ( ( 𝑦  ∈  𝐽  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 )  =  𝑌 ) | 
						
							| 86 | 83 8 85 | 3imp3i2an | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 )  =  𝑌 ) | 
						
							| 87 | 82 86 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼  ∧  𝑦  ∈  𝐽 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 88 | 87 | mpoeq3dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 89 | 77 88 | eqtrid | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) )  =  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 90 | 89 | oveq2d | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑖  ∈  𝐼 ,  𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) | 
						
							| 91 |  | nfcv | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 92 |  | nfcv | ⊢ Ⅎ 𝑥  Σg | 
						
							| 93 |  | nfcv | ⊢ Ⅎ 𝑥 𝐽 | 
						
							| 94 | 93 67 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) | 
						
							| 95 | 91 92 94 | nfov | ⊢ Ⅎ 𝑥 ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) | 
						
							| 96 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) ) | 
						
							| 97 | 74 | oveq1d | ⊢ ( 𝑖  =  𝑥  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) | 
						
							| 98 | 97 | mpteq2dv | ⊢ ( 𝑖  =  𝑥  →  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) )  =  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) | 
						
							| 99 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 ) | 
						
							| 100 | 99 69 70 | nfov | ⊢ Ⅎ 𝑦 ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 101 | 75 | oveq2d | ⊢ ( 𝑗  =  𝑦  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) )  =  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) | 
						
							| 102 | 100 73 101 | cbvmpt | ⊢ ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) )  =  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) | 
						
							| 103 | 98 102 | eqtrdi | ⊢ ( 𝑖  =  𝑥  →  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) )  =  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( 𝑖  =  𝑥  →  ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) )  =  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 105 | 95 96 104 | cbvmpt | ⊢ ( 𝑖  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 106 | 87 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑦  ∈  𝐽 )  →  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 107 | 106 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) | 
						
							| 108 | 107 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) )  =  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) | 
						
							| 109 | 108 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑥 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑦 ) ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) ) | 
						
							| 110 | 105 109 | eqtrid | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) ) | 
						
							| 111 | 110 | oveq2d | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑖  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑗  ∈  𝐽  ↦  ( ( ( 𝑥  ∈  𝐼  ↦  𝑋 ) ‘ 𝑖 )  ·  ( ( 𝑦  ∈  𝐽  ↦  𝑌 ) ‘ 𝑗 ) ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) ) ) | 
						
							| 112 | 63 90 111 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) ) ) | 
						
							| 113 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  Ring ) | 
						
							| 114 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐽  ∈  𝑊 ) | 
						
							| 115 | 8 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  ∧  𝑦  ∈  𝐽 )  →  𝑌  ∈  𝐵 ) | 
						
							| 116 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑦  ∈  𝐽  ↦  𝑌 )  finSupp   0  ) | 
						
							| 117 | 1 3 2 113 114 7 115 116 | gsummulc2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) )  =  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) ) ) | 
						
							| 118 | 117 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) ) ) ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) ) ) ) ) | 
						
							| 120 | 1 3 11 5 18 10 | gsumcl | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) )  ∈  𝐵 ) | 
						
							| 121 | 1 3 2 6 4 120 7 9 | gsummulc1 | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  ( 𝑋  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) ) ) )  =  ( ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  𝑋 ) )  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) ) ) | 
						
							| 122 | 112 119 121 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( 𝑅  Σg  ( 𝑥  ∈  𝐼  ↦  𝑋 ) )  ·  ( 𝑅  Σg  ( 𝑦  ∈  𝐽  ↦  𝑌 ) ) )  =  ( 𝑅  Σg  ( 𝑥  ∈  𝐼 ,  𝑦  ∈  𝐽  ↦  ( 𝑋  ·  𝑌 ) ) ) ) |