Step |
Hyp |
Ref |
Expression |
1 |
|
gsumfsum.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
gsumfsum.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
mpteq1 |
⊢ ( 𝐴 = ∅ → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ ∅ ↦ 𝐵 ) ) |
4 |
|
mpt0 |
⊢ ( 𝑘 ∈ ∅ ↦ 𝐵 ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ∅ ) |
6 |
5
|
oveq2d |
⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( ℂfld Σg ∅ ) ) |
7 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
8 |
7
|
gsum0 |
⊢ ( ℂfld Σg ∅ ) = 0 |
9 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 |
10 |
8 9
|
eqtr4i |
⊢ ( ℂfld Σg ∅ ) = Σ 𝑘 ∈ ∅ 𝐵 |
11 |
6 10
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ ∅ 𝐵 ) |
12 |
|
sumeq1 |
⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) |
13 |
11 12
|
eqtr4d |
⊢ ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
15 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
16 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
17 |
|
eqid |
⊢ ( Cntz ‘ ℂfld ) = ( Cntz ‘ ℂfld ) |
18 |
|
cnring |
⊢ ℂfld ∈ Ring |
19 |
|
ringmnd |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) |
20 |
18 19
|
mp1i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ℂfld ∈ Mnd ) |
21 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝐴 ∈ Fin ) |
22 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
24 |
|
ringcmn |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ CMnd ) |
25 |
18 24
|
mp1i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ℂfld ∈ CMnd ) |
26 |
15 17 25 23
|
cntzcmnf |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ⊆ ( ( Cntz ‘ ℂfld ) ‘ ran ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
29 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) |
30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1→ 𝐴 ) |
31 |
|
suppssdm |
⊢ ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ dom ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
32 |
31 23
|
fssdm |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ 𝐴 ) |
33 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 ) |
34 |
|
forn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
35 |
28 33 34
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ran 𝑓 = 𝐴 ) |
36 |
32 35
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) supp 0 ) ⊆ ran 𝑓 ) |
37 |
|
eqid |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) supp 0 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) supp 0 ) |
38 |
15 7 16 17 20 21 23 26 27 30 36 37
|
gsumval3 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
39 |
|
sumfc |
⊢ Σ 𝑥 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = Σ 𝑘 ∈ 𝐴 𝐵 |
40 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
41 |
23
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ∈ ℂ ) |
42 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
43 |
28 42
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
44 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
45 |
43 44
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
46 |
40 27 28 41 45
|
fsum |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑥 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
47 |
39 46
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
48 |
38 47
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |
49 |
48
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
50 |
49
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
51 |
50
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) ) |
52 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
53 |
1 52
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
54 |
14 51 53
|
mpjaod |
⊢ ( 𝜑 → ( ℂfld Σg ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) = Σ 𝑘 ∈ 𝐴 𝐵 ) |