| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsuminv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsuminv.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsuminv.p | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | gsuminv.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | gsuminv.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsuminv.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 7 |  | gsuminv.n | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 8 |  | ablcmn | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  CMnd ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 10 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 12 | 1 3 | invghm | ⊢ ( 𝐺  ∈  Abel  ↔  𝐼  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 13 | 4 12 | sylib | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 14 |  | ghmmhm | ⊢ ( 𝐼  ∈  ( 𝐺  GrpHom  𝐺 )  →  𝐼  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 16 | 1 2 9 11 5 15 6 7 | gsummhm | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐼  ∘  𝐹 ) )  =  ( 𝐼 ‘ ( 𝐺  Σg  𝐹 ) ) ) |