Step |
Hyp |
Ref |
Expression |
1 |
|
gsummatr01.p |
⊢ 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) |
2 |
|
gsummatr01.r |
⊢ 𝑅 = { 𝑟 ∈ 𝑃 ∣ ( 𝑟 ‘ 𝐾 ) = 𝐿 } |
3 |
|
simpr |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → 𝑋 ∈ 𝑁 ) |
4 |
1 2
|
gsummatr01lem1 |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) |
5 |
3 4
|
jca |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → ( 𝑋 ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) ) |
6 |
|
ovrspc2v |
⊢ ( ( ( 𝑋 ∈ 𝑁 ∧ ( 𝑄 ‘ 𝑋 ) ∈ 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 𝐴 ( 𝑄 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐺 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 𝐴 ( 𝑄 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐺 ) ) |
8 |
7
|
ex |
⊢ ( ( 𝑄 ∈ 𝑅 ∧ 𝑋 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑋 𝐴 ( 𝑄 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝐺 ) ) ) |