Metamath Proof Explorer


Theorem gsummatr01lem2

Description: Lemma B for gsummatr01 . (Contributed by AV, 8-Jan-2019)

Ref Expression
Hypotheses gsummatr01.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
gsummatr01.r 𝑅 = { 𝑟𝑃 ∣ ( 𝑟𝐾 ) = 𝐿 }
Assertion gsummatr01lem2 ( ( 𝑄𝑅𝑋𝑁 ) → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑋 𝐴 ( 𝑄𝑋 ) ) ∈ ( Base ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 gsummatr01.p 𝑃 = ( Base ‘ ( SymGrp ‘ 𝑁 ) )
2 gsummatr01.r 𝑅 = { 𝑟𝑃 ∣ ( 𝑟𝐾 ) = 𝐿 }
3 simpr ( ( 𝑄𝑅𝑋𝑁 ) → 𝑋𝑁 )
4 1 2 gsummatr01lem1 ( ( 𝑄𝑅𝑋𝑁 ) → ( 𝑄𝑋 ) ∈ 𝑁 )
5 3 4 jca ( ( 𝑄𝑅𝑋𝑁 ) → ( 𝑋𝑁 ∧ ( 𝑄𝑋 ) ∈ 𝑁 ) )
6 ovrspc2v ( ( ( 𝑋𝑁 ∧ ( 𝑄𝑋 ) ∈ 𝑁 ) ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 𝐴 ( 𝑄𝑋 ) ) ∈ ( Base ‘ 𝐺 ) )
7 5 6 sylan ( ( ( 𝑄𝑅𝑋𝑁 ) ∧ ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 𝐴 ( 𝑄𝑋 ) ) ∈ ( Base ‘ 𝐺 ) )
8 7 ex ( ( 𝑄𝑅𝑋𝑁 ) → ( ∀ 𝑖𝑁𝑗𝑁 ( 𝑖 𝐴 𝑗 ) ∈ ( Base ‘ 𝐺 ) → ( 𝑋 𝐴 ( 𝑄𝑋 ) ) ∈ ( Base ‘ 𝐺 ) ) )