| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummgp0.g | ⊢ 𝐺  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 2 |  | gsummgp0.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | gsummgp0.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 4 |  | gsummgp0.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 5 |  | gsummgp0.a | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 6 |  | gsummgp0.e | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑖 )  →  𝐴  =  𝐵 ) | 
						
							| 7 |  | gsummgp0.b | ⊢ ( 𝜑  →  ∃ 𝑖  ∈  𝑁 𝐵  =   0  ) | 
						
							| 8 |  | difsnid | ⊢ ( 𝑖  ∈  𝑁  →  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } )  =  𝑁 ) | 
						
							| 9 | 8 | eqcomd | ⊢ ( 𝑖  ∈  𝑁  →  𝑁  =  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ) | 
						
							| 10 | 9 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  𝑁  =  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } ) ) | 
						
							| 11 | 10 | mpteq1d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝑛  ∈  𝑁  ↦  𝐴 )  =  ( 𝑛  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } )  ↦  𝐴 ) ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  𝐴 ) )  =  ( 𝐺  Σg  ( 𝑛  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } )  ↦  𝐴 ) ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 14 | 1 13 | mgpbas | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝐺 ) | 
						
							| 15 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 16 | 1 15 | mgpplusg | ⊢ ( .r ‘ 𝑅 )  =  ( +g ‘ 𝐺 ) | 
						
							| 17 | 1 | crngmgp | ⊢ ( 𝑅  ∈  CRing  →  𝐺  ∈  CMnd ) | 
						
							| 18 | 3 17 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  𝐺  ∈  CMnd ) | 
						
							| 20 |  | diffi | ⊢ ( 𝑁  ∈  Fin  →  ( 𝑁  ∖  { 𝑖 } )  ∈  Fin ) | 
						
							| 21 | 4 20 | syl | ⊢ ( 𝜑  →  ( 𝑁  ∖  { 𝑖 } )  ∈  Fin ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝑁  ∖  { 𝑖 } )  ∈  Fin ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  𝜑 ) | 
						
							| 24 |  | eldifi | ⊢ ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  →  𝑛  ∈  𝑁 ) | 
						
							| 25 | 23 24 5 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  ∧  𝑛  ∈  ( 𝑁  ∖  { 𝑖 } ) )  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 26 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  𝑖  ∈  𝑁 ) | 
						
							| 27 |  | neldifsnd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ¬  𝑖  ∈  ( 𝑁  ∖  { 𝑖 } ) ) | 
						
							| 28 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 29 | 3 28 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 30 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 31 | 13 2 | mndidcl | ⊢ ( 𝑅  ∈  Mnd  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 29 30 31 | 3syl | ⊢ ( 𝜑  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →   0   ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 34 |  | eleq1 | ⊢ ( 𝐵  =   0   →  ( 𝐵  ∈  ( Base ‘ 𝑅 )  ↔   0   ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 35 | 34 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝐵  ∈  ( Base ‘ 𝑅 )  ↔   0   ∈  ( Base ‘ 𝑅 ) ) ) | 
						
							| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  𝐵  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 37 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  ∧  𝑛  =  𝑖 )  →  𝐴  =  𝐵 ) | 
						
							| 38 | 14 16 19 22 25 26 27 36 37 | gsumunsnd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝐺  Σg  ( 𝑛  ∈  ( ( 𝑁  ∖  { 𝑖 } )  ∪  { 𝑖 } )  ↦  𝐴 ) )  =  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝐵  =   0   →  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 )  =  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 40 | 39 | ad2antll | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 )  =  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 41 | 24 5 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑁  ∖  { 𝑖 } ) )  →  𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 41 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } ) 𝐴  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 14 18 21 42 | gsummptcl | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 45 | 13 15 2 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 46 | 29 44 45 | syl2an2r | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 47 | 40 46 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( ( 𝐺  Σg  ( 𝑛  ∈  ( 𝑁  ∖  { 𝑖 } )  ↦  𝐴 ) ) ( .r ‘ 𝑅 ) 𝐵 )  =   0  ) | 
						
							| 48 | 12 38 47 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  𝑁  ∧  𝐵  =   0  ) )  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  𝐴 ) )  =   0  ) | 
						
							| 49 | 7 48 | rexlimddv | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑛  ∈  𝑁  ↦  𝐴 ) )  =   0  ) |