Step |
Hyp |
Ref |
Expression |
1 |
|
gsummhm2.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummhm2.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsummhm2.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsummhm2.h |
⊢ ( 𝜑 → 𝐻 ∈ Mnd ) |
5 |
|
gsummhm2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
gsummhm2.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) ) |
7 |
|
gsummhm2.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
8 |
|
gsummhm2.w |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) |
9 |
|
gsummhm2.1 |
⊢ ( 𝑥 = 𝑋 → 𝐶 = 𝐷 ) |
10 |
|
gsummhm2.2 |
⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → 𝐶 = 𝐸 ) |
11 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) : 𝐴 ⟶ 𝐵 ) |
12 |
1 2 3 4 5 6 11 8
|
gsummhm |
⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ) |
15 |
7 13 14 9
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) = ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 𝐻 Σg ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∘ ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) |
18 |
1 2 3 5 11 8
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ∈ 𝐵 ) |
19 |
10
|
eleq1d |
⊢ ( 𝑥 = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) → ( 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ 𝐸 ∈ ( Base ‘ 𝐻 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
21 |
1 20
|
mhmf |
⊢ ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
23 |
17
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
24 |
22 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ) |
25 |
19 24 18
|
rspcdva |
⊢ ( 𝜑 → 𝐸 ∈ ( Base ‘ 𝐻 ) ) |
26 |
17 10 18 25
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) = 𝐸 ) |
27 |
12 16 26
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑘 ∈ 𝐴 ↦ 𝐷 ) ) = 𝐸 ) |