Metamath Proof Explorer


Theorem gsummhm2

Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsummhm2.b 𝐵 = ( Base ‘ 𝐺 )
gsummhm2.z 0 = ( 0g𝐺 )
gsummhm2.g ( 𝜑𝐺 ∈ CMnd )
gsummhm2.h ( 𝜑𝐻 ∈ Mnd )
gsummhm2.a ( 𝜑𝐴𝑉 )
gsummhm2.k ( 𝜑 → ( 𝑥𝐵𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) )
gsummhm2.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
gsummhm2.w ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
gsummhm2.1 ( 𝑥 = 𝑋𝐶 = 𝐷 )
gsummhm2.2 ( 𝑥 = ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) → 𝐶 = 𝐸 )
Assertion gsummhm2 ( 𝜑 → ( 𝐻 Σg ( 𝑘𝐴𝐷 ) ) = 𝐸 )

Proof

Step Hyp Ref Expression
1 gsummhm2.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummhm2.z 0 = ( 0g𝐺 )
3 gsummhm2.g ( 𝜑𝐺 ∈ CMnd )
4 gsummhm2.h ( 𝜑𝐻 ∈ Mnd )
5 gsummhm2.a ( 𝜑𝐴𝑉 )
6 gsummhm2.k ( 𝜑 → ( 𝑥𝐵𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) )
7 gsummhm2.f ( ( 𝜑𝑘𝐴 ) → 𝑋𝐵 )
8 gsummhm2.w ( 𝜑 → ( 𝑘𝐴𝑋 ) finSupp 0 )
9 gsummhm2.1 ( 𝑥 = 𝑋𝐶 = 𝐷 )
10 gsummhm2.2 ( 𝑥 = ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) → 𝐶 = 𝐸 )
11 7 fmpttd ( 𝜑 → ( 𝑘𝐴𝑋 ) : 𝐴𝐵 )
12 1 2 3 4 5 6 11 8 gsummhm ( 𝜑 → ( 𝐻 Σg ( ( 𝑥𝐵𝐶 ) ∘ ( 𝑘𝐴𝑋 ) ) ) = ( ( 𝑥𝐵𝐶 ) ‘ ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) ) )
13 eqidd ( 𝜑 → ( 𝑘𝐴𝑋 ) = ( 𝑘𝐴𝑋 ) )
14 eqidd ( 𝜑 → ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 ) )
15 7 13 14 9 fmptco ( 𝜑 → ( ( 𝑥𝐵𝐶 ) ∘ ( 𝑘𝐴𝑋 ) ) = ( 𝑘𝐴𝐷 ) )
16 15 oveq2d ( 𝜑 → ( 𝐻 Σg ( ( 𝑥𝐵𝐶 ) ∘ ( 𝑘𝐴𝑋 ) ) ) = ( 𝐻 Σg ( 𝑘𝐴𝐷 ) ) )
17 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
18 1 2 3 5 11 8 gsumcl ( 𝜑 → ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) ∈ 𝐵 )
19 10 eleq1d ( 𝑥 = ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) → ( 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ 𝐸 ∈ ( Base ‘ 𝐻 ) ) )
20 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
21 1 20 mhmf ( ( 𝑥𝐵𝐶 ) ∈ ( 𝐺 MndHom 𝐻 ) → ( 𝑥𝐵𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
22 6 21 syl ( 𝜑 → ( 𝑥𝐵𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
23 17 fmpt ( ∀ 𝑥𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥𝐵𝐶 ) : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
24 22 23 sylibr ( 𝜑 → ∀ 𝑥𝐵 𝐶 ∈ ( Base ‘ 𝐻 ) )
25 19 24 18 rspcdva ( 𝜑𝐸 ∈ ( Base ‘ 𝐻 ) )
26 17 10 18 25 fvmptd3 ( 𝜑 → ( ( 𝑥𝐵𝐶 ) ‘ ( 𝐺 Σg ( 𝑘𝐴𝑋 ) ) ) = 𝐸 )
27 12 16 26 3eqtr3d ( 𝜑 → ( 𝐻 Σg ( 𝑘𝐴𝐷 ) ) = 𝐸 )