Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt1n0.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
2 |
|
gsummpt1n0.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
3 |
|
gsummpt1n0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
4 |
|
gsummpt1n0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
5 |
|
gsummpt1n0.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) |
6 |
|
gsummpt1n0.a |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
8 |
6
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
9 |
7 1
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ ( Base ‘ 𝐺 ) ) |
10 |
2 9
|
syl |
⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
12 |
8 11
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ∈ ( Base ‘ 𝐺 ) ) |
13 |
12 5
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
14 |
5
|
oveq1i |
⊢ ( 𝐹 supp 0 ) = ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) |
15 |
|
eldifsni |
⊢ ( 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑛 ≠ 𝑋 ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑛 ≠ 𝑋 ) |
17 |
|
ifnefalse |
⊢ ( 𝑛 ≠ 𝑋 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) |
19 |
18 3
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
20 |
14 19
|
eqsstrid |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ { 𝑋 } ) |
21 |
7 1 2 3 4 13 20
|
gsumpt |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐹 ‘ 𝑋 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑦 if ( 𝑛 = 𝑋 , 𝐴 , 0 ) |
23 |
|
nfv |
⊢ Ⅎ 𝑛 𝑦 = 𝑋 |
24 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 |
25 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
26 |
23 24 25
|
nfif |
⊢ Ⅎ 𝑛 if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) |
27 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 = 𝑋 ↔ 𝑦 = 𝑋 ) ) |
28 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) |
29 |
27 28
|
ifbieq1d |
⊢ ( 𝑛 = 𝑦 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
30 |
22 26 29
|
cbvmpt |
⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
31 |
5 30
|
eqtri |
⊢ 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
32 |
|
iftrue |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) |
33 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑛 ⦌ 𝐴 = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
34 |
32 33
|
eqtrd |
⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
35 |
|
rspcsbela |
⊢ ( ( 𝑋 ∈ 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
36 |
4 6 35
|
syl2anc |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
37 |
31 34 4 36
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
38 |
21 37
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |