| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummpt1n0.0 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 2 |  | gsummpt1n0.g | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 3 |  | gsummpt1n0.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 4 |  | gsummpt1n0.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐼 ) | 
						
							| 5 |  | gsummpt1n0.f | ⊢ 𝐹  =  ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  ) ) | 
						
							| 6 |  | gsummpt1n0.a | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝐼 𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 8 | 6 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 9 | 7 1 | mndidcl | ⊢ ( 𝐺  ∈  Mnd  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →   0   ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 12 | 8 11 | ifcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐼 )  →  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 13 | 12 5 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 14 | 5 | oveq1i | ⊢ ( 𝐹  supp   0  )  =  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  ) )  supp   0  ) | 
						
							| 15 |  | eldifsni | ⊢ ( 𝑛  ∈  ( 𝐼  ∖  { 𝑋 } )  →  𝑛  ≠  𝑋 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝐼  ∖  { 𝑋 } ) )  →  𝑛  ≠  𝑋 ) | 
						
							| 17 |  | ifnefalse | ⊢ ( 𝑛  ≠  𝑋  →  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  )  =   0  ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝐼  ∖  { 𝑋 } ) )  →  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  )  =   0  ) | 
						
							| 19 | 18 3 | suppss2 | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  ) )  supp   0  )  ⊆  { 𝑋 } ) | 
						
							| 20 | 14 19 | eqsstrid | ⊢ ( 𝜑  →  ( 𝐹  supp   0  )  ⊆  { 𝑋 } ) | 
						
							| 21 | 7 1 2 3 4 13 20 | gsumpt | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑛  =  𝑋 ,  𝐴 ,   0  ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑛 𝑦  =  𝑋 | 
						
							| 24 |  | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑦  /  𝑛 ⦌ 𝐴 | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑛  0 | 
						
							| 26 | 23 24 25 | nfif | ⊢ Ⅎ 𝑛 if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑛  =  𝑦  →  ( 𝑛  =  𝑋  ↔  𝑦  =  𝑋 ) ) | 
						
							| 28 |  | csbeq1a | ⊢ ( 𝑛  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ) | 
						
							| 29 | 27 28 | ifbieq1d | ⊢ ( 𝑛  =  𝑦  →  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  )  =  if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  ) ) | 
						
							| 30 | 22 26 29 | cbvmpt | ⊢ ( 𝑛  ∈  𝐼  ↦  if ( 𝑛  =  𝑋 ,  𝐴 ,   0  ) )  =  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  ) ) | 
						
							| 31 | 5 30 | eqtri | ⊢ 𝐹  =  ( 𝑦  ∈  𝐼  ↦  if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  ) ) | 
						
							| 32 |  | iftrue | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  )  =  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ) | 
						
							| 33 |  | csbeq1 | ⊢ ( 𝑦  =  𝑋  →  ⦋ 𝑦  /  𝑛 ⦌ 𝐴  =  ⦋ 𝑋  /  𝑛 ⦌ 𝐴 ) | 
						
							| 34 | 32 33 | eqtrd | ⊢ ( 𝑦  =  𝑋  →  if ( 𝑦  =  𝑋 ,  ⦋ 𝑦  /  𝑛 ⦌ 𝐴 ,   0  )  =  ⦋ 𝑋  /  𝑛 ⦌ 𝐴 ) | 
						
							| 35 |  | rspcsbela | ⊢ ( ( 𝑋  ∈  𝐼  ∧  ∀ 𝑛  ∈  𝐼 𝐴  ∈  ( Base ‘ 𝐺 ) )  →  ⦋ 𝑋  /  𝑛 ⦌ 𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 36 | 4 6 35 | syl2anc | ⊢ ( 𝜑  →  ⦋ 𝑋  /  𝑛 ⦌ 𝐴  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 37 | 31 34 4 36 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑋 )  =  ⦋ 𝑋  /  𝑛 ⦌ 𝐴 ) | 
						
							| 38 | 21 37 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ⦋ 𝑋  /  𝑛 ⦌ 𝐴 ) |