Metamath Proof Explorer


Theorem gsummptcl

Description: Closure of a finite group sum over a finite set as map. (Contributed by AV, 29-Dec-2018)

Ref Expression
Hypotheses gsummptcl.b 𝐵 = ( Base ‘ 𝐺 )
gsummptcl.g ( 𝜑𝐺 ∈ CMnd )
gsummptcl.n ( 𝜑𝑁 ∈ Fin )
gsummptcl.e ( 𝜑 → ∀ 𝑖𝑁 𝑋𝐵 )
Assertion gsummptcl ( 𝜑 → ( 𝐺 Σg ( 𝑖𝑁𝑋 ) ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsummptcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptcl.g ( 𝜑𝐺 ∈ CMnd )
3 gsummptcl.n ( 𝜑𝑁 ∈ Fin )
4 gsummptcl.e ( 𝜑 → ∀ 𝑖𝑁 𝑋𝐵 )
5 eqid ( 0g𝐺 ) = ( 0g𝐺 )
6 eqid ( 𝑖𝑁𝑋 ) = ( 𝑖𝑁𝑋 )
7 6 fmpt ( ∀ 𝑖𝑁 𝑋𝐵 ↔ ( 𝑖𝑁𝑋 ) : 𝑁𝐵 )
8 4 7 sylib ( 𝜑 → ( 𝑖𝑁𝑋 ) : 𝑁𝐵 )
9 6 fnmpt ( ∀ 𝑖𝑁 𝑋𝐵 → ( 𝑖𝑁𝑋 ) Fn 𝑁 )
10 4 9 syl ( 𝜑 → ( 𝑖𝑁𝑋 ) Fn 𝑁 )
11 fvexd ( 𝜑 → ( 0g𝐺 ) ∈ V )
12 10 3 11 fndmfifsupp ( 𝜑 → ( 𝑖𝑁𝑋 ) finSupp ( 0g𝐺 ) )
13 1 5 2 3 8 12 gsumcl ( 𝜑 → ( 𝐺 Σg ( 𝑖𝑁𝑋 ) ) ∈ 𝐵 )