Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptcl.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
gsummptcl.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
4 |
|
gsummptcl.e |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) = ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) |
7 |
6
|
fmpt |
⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) : 𝑁 ⟶ 𝐵 ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) : 𝑁 ⟶ 𝐵 ) |
9 |
6
|
fnmpt |
⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) Fn 𝑁 ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) Fn 𝑁 ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
12 |
10 3 11
|
fndmfifsupp |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
13 |
1 5 2 3 8 12
|
gsumcl |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) ) ∈ 𝐵 ) |