| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptf1o.x |
⊢ Ⅎ 𝑥 𝐻 |
| 2 |
|
gsummptf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 3 |
|
gsummptf1o.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
gsummptf1o.i |
⊢ ( 𝑥 = 𝐸 → 𝐶 = 𝐻 ) |
| 5 |
|
gsummptf1o.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 6 |
|
gsummptf1o.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 7 |
|
gsummptf1o.d |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 8 |
|
gsummptf1o.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐹 ) |
| 9 |
|
gsummptf1o.e |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐸 ∈ 𝐴 ) |
| 10 |
|
gsummptf1o.h |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) |
| 11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ⊆ 𝐵 ) |
| 12 |
11 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| 13 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 15 |
3
|
fvexi |
⊢ 0 ∈ V |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 17 |
14 6 12 16
|
fsuppmptdm |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) |
| 18 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ) |
| 19 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) |
| 20 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) |
| 21 |
20
|
f1ompt |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ↔ ( ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) ) |
| 22 |
18 19 21
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ) |
| 23 |
2 3 5 6 13 17 22
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) ) |
| 24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |
| 25 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 26 |
18 24 25
|
fmptcos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) ) |
| 27 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) |
| 28 |
1
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Ⅎ 𝑥 𝐻 ) |
| 29 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 = 𝐸 ) → 𝐶 = 𝐻 ) |
| 30 |
27 28 9 29
|
csbiedf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ⦋ 𝐸 / 𝑥 ⦌ 𝐶 = 𝐻 ) |
| 31 |
30
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
| 32 |
26 31
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |
| 34 |
23 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |