Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptf1o.x |
⊢ Ⅎ 𝑥 𝐻 |
2 |
|
gsummptf1o.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
3 |
|
gsummptf1o.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
gsummptf1o.i |
⊢ ( 𝑥 = 𝐸 → 𝐶 = 𝐻 ) |
5 |
|
gsummptf1o.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
6 |
|
gsummptf1o.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
7 |
|
gsummptf1o.d |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
8 |
|
gsummptf1o.f |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐹 ) |
9 |
|
gsummptf1o.e |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → 𝐸 ∈ 𝐴 ) |
10 |
|
gsummptf1o.h |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) |
11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 ⊆ 𝐵 ) |
12 |
11 8
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
13 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
14 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
15 |
3
|
fvexi |
⊢ 0 ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
17 |
14 6 12 16
|
fsuppmptdm |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) |
18 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ) |
19 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) |
20 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) |
21 |
20
|
f1ompt |
⊢ ( ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ↔ ( ∀ 𝑦 ∈ 𝐷 𝐸 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐷 𝑥 = 𝐸 ) ) |
22 |
18 19 21
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) : 𝐷 –1-1-onto→ 𝐴 ) |
23 |
2 3 5 6 13 17 22
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) ) |
24 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) |
25 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
26 |
18 24 25
|
fmptcos |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) ) |
27 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) |
28 |
1
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → Ⅎ 𝑥 𝐻 ) |
29 |
4
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑥 = 𝐸 ) → 𝐶 = 𝐻 ) |
30 |
27 28 9 29
|
csbiedf |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐷 ) → ⦋ 𝐸 / 𝑥 ⦌ 𝐶 = 𝐻 ) |
31 |
30
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ ⦋ 𝐸 / 𝑥 ⦌ 𝐶 ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
32 |
26 31
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) = ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∘ ( 𝑦 ∈ 𝐷 ↦ 𝐸 ) ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |
34 |
23 33
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝐺 Σg ( 𝑦 ∈ 𝐷 ↦ 𝐻 ) ) ) |