Metamath Proof Explorer


Theorem gsummptf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Thierry Arnoux, 29-Mar-2018)

Ref Expression
Hypotheses gsummptf1o.x 𝑥 𝐻
gsummptf1o.b 𝐵 = ( Base ‘ 𝐺 )
gsummptf1o.z 0 = ( 0g𝐺 )
gsummptf1o.i ( 𝑥 = 𝐸𝐶 = 𝐻 )
gsummptf1o.g ( 𝜑𝐺 ∈ CMnd )
gsummptf1o.a ( 𝜑𝐴 ∈ Fin )
gsummptf1o.d ( 𝜑𝐹𝐵 )
gsummptf1o.f ( ( 𝜑𝑥𝐴 ) → 𝐶𝐹 )
gsummptf1o.e ( ( 𝜑𝑦𝐷 ) → 𝐸𝐴 )
gsummptf1o.h ( ( 𝜑𝑥𝐴 ) → ∃! 𝑦𝐷 𝑥 = 𝐸 )
Assertion gsummptf1o ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptf1o.x 𝑥 𝐻
2 gsummptf1o.b 𝐵 = ( Base ‘ 𝐺 )
3 gsummptf1o.z 0 = ( 0g𝐺 )
4 gsummptf1o.i ( 𝑥 = 𝐸𝐶 = 𝐻 )
5 gsummptf1o.g ( 𝜑𝐺 ∈ CMnd )
6 gsummptf1o.a ( 𝜑𝐴 ∈ Fin )
7 gsummptf1o.d ( 𝜑𝐹𝐵 )
8 gsummptf1o.f ( ( 𝜑𝑥𝐴 ) → 𝐶𝐹 )
9 gsummptf1o.e ( ( 𝜑𝑦𝐷 ) → 𝐸𝐴 )
10 gsummptf1o.h ( ( 𝜑𝑥𝐴 ) → ∃! 𝑦𝐷 𝑥 = 𝐸 )
11 7 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹𝐵 )
12 11 8 sseldd ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
13 12 fmpttd ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴𝐵 )
14 eqid ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 )
15 3 fvexi 0 ∈ V
16 15 a1i ( 𝜑0 ∈ V )
17 14 6 12 16 fsuppmptdm ( 𝜑 → ( 𝑥𝐴𝐶 ) finSupp 0 )
18 9 ralrimiva ( 𝜑 → ∀ 𝑦𝐷 𝐸𝐴 )
19 10 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ∃! 𝑦𝐷 𝑥 = 𝐸 )
20 eqid ( 𝑦𝐷𝐸 ) = ( 𝑦𝐷𝐸 )
21 20 f1ompt ( ( 𝑦𝐷𝐸 ) : 𝐷1-1-onto𝐴 ↔ ( ∀ 𝑦𝐷 𝐸𝐴 ∧ ∀ 𝑥𝐴 ∃! 𝑦𝐷 𝑥 = 𝐸 ) )
22 18 19 21 sylanbrc ( 𝜑 → ( 𝑦𝐷𝐸 ) : 𝐷1-1-onto𝐴 )
23 2 3 5 6 13 17 22 gsumf1o ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) ) )
24 eqidd ( 𝜑 → ( 𝑦𝐷𝐸 ) = ( 𝑦𝐷𝐸 ) )
25 eqidd ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 ) )
26 18 24 25 fmptcos ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) = ( 𝑦𝐷 𝐸 / 𝑥 𝐶 ) )
27 nfv 𝑥 ( 𝜑𝑦𝐷 )
28 1 a1i ( ( 𝜑𝑦𝐷 ) → 𝑥 𝐻 )
29 4 adantl ( ( ( 𝜑𝑦𝐷 ) ∧ 𝑥 = 𝐸 ) → 𝐶 = 𝐻 )
30 27 28 9 29 csbiedf ( ( 𝜑𝑦𝐷 ) → 𝐸 / 𝑥 𝐶 = 𝐻 )
31 30 mpteq2dva ( 𝜑 → ( 𝑦𝐷 𝐸 / 𝑥 𝐶 ) = ( 𝑦𝐷𝐻 ) )
32 26 31 eqtrd ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) = ( 𝑦𝐷𝐻 ) )
33 32 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )
34 23 33 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )