| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptfidmadd.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummptfidmadd.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsummptfidmadd.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsummptfidmadd.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | gsummptfidmadd.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 6 |  | gsummptfidmadd.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  ∈  𝐵 ) | 
						
							| 7 |  | gsummptfidmadd.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 8 |  | gsummptfidmadd.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝐴  ↦  𝐷 ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 10 | 7 | a1i | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 11 | 8 | a1i | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝐴  ↦  𝐷 ) ) | 
						
							| 12 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 13 | 7 4 5 12 | fsuppmptdm | ⊢ ( 𝜑  →  𝐹  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 14 | 8 4 6 12 | fsuppmptdm | ⊢ ( 𝜑  →  𝐻  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 15 | 1 9 2 3 4 5 6 10 11 13 14 | gsummptfsadd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  +  𝐷 ) ) )  =  ( ( 𝐺  Σg  𝐹 )  +  ( 𝐺  Σg  𝐻 ) ) ) |