Metamath Proof Explorer
		
		
		
		Description:  Inverse of a group sum expressed as mapping with a finite domain.
       (Contributed by AV, 23-Jul-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gsuminv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | gsuminv.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
					
						|  |  | gsuminv.p | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
					
						|  |  | gsuminv.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
					
						|  |  | gsummptfidminv.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
					
						|  |  | gsummptfidminv.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
					
						|  |  | gsummptfidminv.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
				
					|  | Assertion | gsummptfidminv | ⊢  ( 𝜑  →  ( 𝐺  Σg  ( 𝐼  ∘  𝐹 ) )  =  ( 𝐼 ‘ ( 𝐺  Σg  𝐹 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsuminv.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsuminv.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsuminv.p | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 |  | gsuminv.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | gsummptfidminv.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 6 |  | gsummptfidminv.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 7 |  | gsummptfidminv.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) | 
						
							| 8 | 6 7 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 9 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →   0   ∈  V ) | 
						
							| 11 | 7 5 6 10 | fsuppmptdm | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 12 | 1 2 3 4 5 8 11 | gsuminv | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐼  ∘  𝐹 ) )  =  ( 𝐼 ‘ ( 𝐺  Σg  𝐹 ) ) ) |