Metamath Proof Explorer


Theorem gsummptfidminv

Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsuminv.b 𝐵 = ( Base ‘ 𝐺 )
gsuminv.z 0 = ( 0g𝐺 )
gsuminv.p 𝐼 = ( invg𝐺 )
gsuminv.g ( 𝜑𝐺 ∈ Abel )
gsummptfidminv.a ( 𝜑𝐴 ∈ Fin )
gsummptfidminv.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
gsummptfidminv.f 𝐹 = ( 𝑥𝐴𝐶 )
Assertion gsummptfidminv ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 gsuminv.b 𝐵 = ( Base ‘ 𝐺 )
2 gsuminv.z 0 = ( 0g𝐺 )
3 gsuminv.p 𝐼 = ( invg𝐺 )
4 gsuminv.g ( 𝜑𝐺 ∈ Abel )
5 gsummptfidminv.a ( 𝜑𝐴 ∈ Fin )
6 gsummptfidminv.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
7 gsummptfidminv.f 𝐹 = ( 𝑥𝐴𝐶 )
8 6 7 fmptd ( 𝜑𝐹 : 𝐴𝐵 )
9 2 fvexi 0 ∈ V
10 9 a1i ( 𝜑0 ∈ V )
11 7 5 6 10 fsuppmptdm ( 𝜑𝐹 finSupp 0 )
12 1 2 3 4 5 8 11 gsuminv ( 𝜑 → ( 𝐺 Σg ( 𝐼𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) )