Metamath Proof Explorer
Description: Inverse of a group sum expressed as mapping with a finite domain.
(Contributed by AV, 23-Jul-2019)
|
|
Ref |
Expression |
|
Hypotheses |
gsuminv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
gsuminv.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
|
gsuminv.p |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
|
|
gsuminv.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
|
|
gsummptfidminv.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
|
|
gsummptfidminv.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
|
|
gsummptfidminv.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
|
Assertion |
gsummptfidminv |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsuminv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsuminv.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsuminv.p |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
4 |
|
gsuminv.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
5 |
|
gsummptfidminv.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
6 |
|
gsummptfidminv.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
7 |
|
gsummptfidminv.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
8 |
6 7
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
9 |
2
|
fvexi |
⊢ 0 ∈ V |
10 |
9
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
11 |
7 5 6 10
|
fsuppmptdm |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
12 |
1 2 3 4 5 8 11
|
gsuminv |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐼 ∘ 𝐹 ) ) = ( 𝐼 ‘ ( 𝐺 Σg 𝐹 ) ) ) |