| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfidmsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummptfidmsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
gsummptfidmsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsummptfidmsplit.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
gsummptfidmsplit.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) |
| 6 |
|
gsummptfidmsplit.i |
⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) |
| 7 |
|
gsummptfidmsplit.u |
⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) |
| 8 |
|
gsummptfidmsplitres.f |
⊢ 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) |
| 9 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 10 |
5 8
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 11 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 12 |
8 4 5 11
|
fsuppmptdm |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
| 13 |
1 9 2 3 4 10 12 6 7
|
gsumsplit |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐶 ) ) + ( 𝐺 Σg ( 𝐹 ↾ 𝐷 ) ) ) ) |