Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfidmsub.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptfidmsub.s |
⊢ − = ( -g ‘ 𝐺 ) |
3 |
|
gsummptfidmsub.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
4 |
|
gsummptfidmsub.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
gsummptfidmsub.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
6 |
|
gsummptfidmsub.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) |
7 |
|
gsummptfidmsub.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
8 |
|
gsummptfidmsub.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) |
9 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
10 |
7
|
a1i |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
11 |
8
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) |
12 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
13 |
7 4 5 12
|
fsuppmptdm |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
14 |
8 4 6 12
|
fsuppmptdm |
⊢ ( 𝜑 → 𝐻 finSupp ( 0g ‘ 𝐺 ) ) |
15 |
1 9 2 3 4 5 6 10 11 13 14
|
gsummptfssub |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐶 − 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |