| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummptcl.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 3 |  | gsummptcl.n | ⊢ ( 𝜑  →  𝑁  ∈  Fin ) | 
						
							| 4 |  | gsummptcl.e | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  𝑁 𝑋  ∈  𝐵 ) | 
						
							| 5 |  | gsummptfif1o.f | ⊢ 𝐹  =  ( 𝑖  ∈  𝑁  ↦  𝑋 ) | 
						
							| 6 |  | gsummptfif1o.h | ⊢ ( 𝜑  →  𝐻 : 𝐶 –1-1-onto→ 𝑁 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 8 | 5 | fmpt | ⊢ ( ∀ 𝑖  ∈  𝑁 𝑋  ∈  𝐵  ↔  𝐹 : 𝑁 ⟶ 𝐵 ) | 
						
							| 9 | 4 8 | sylib | ⊢ ( 𝜑  →  𝐹 : 𝑁 ⟶ 𝐵 ) | 
						
							| 10 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  ∈  V ) | 
						
							| 11 | 9 3 10 | fdmfifsupp | ⊢ ( 𝜑  →  𝐹  finSupp  ( 0g ‘ 𝐺 ) ) | 
						
							| 12 | 1 7 2 3 9 11 6 | gsumf1o | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐺  Σg  ( 𝐹  ∘  𝐻 ) ) ) |