Metamath Proof Explorer


Theorem gsummptfif1o

Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptcl.b 𝐵 = ( Base ‘ 𝐺 )
gsummptcl.g ( 𝜑𝐺 ∈ CMnd )
gsummptcl.n ( 𝜑𝑁 ∈ Fin )
gsummptcl.e ( 𝜑 → ∀ 𝑖𝑁 𝑋𝐵 )
gsummptfif1o.f 𝐹 = ( 𝑖𝑁𝑋 )
gsummptfif1o.h ( 𝜑𝐻 : 𝐶1-1-onto𝑁 )
Assertion gsummptfif1o ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptcl.g ( 𝜑𝐺 ∈ CMnd )
3 gsummptcl.n ( 𝜑𝑁 ∈ Fin )
4 gsummptcl.e ( 𝜑 → ∀ 𝑖𝑁 𝑋𝐵 )
5 gsummptfif1o.f 𝐹 = ( 𝑖𝑁𝑋 )
6 gsummptfif1o.h ( 𝜑𝐻 : 𝐶1-1-onto𝑁 )
7 eqid ( 0g𝐺 ) = ( 0g𝐺 )
8 5 fmpt ( ∀ 𝑖𝑁 𝑋𝐵𝐹 : 𝑁𝐵 )
9 4 8 sylib ( 𝜑𝐹 : 𝑁𝐵 )
10 fvexd ( 𝜑 → ( 0g𝐺 ) ∈ V )
11 9 3 10 fdmfifsupp ( 𝜑𝐹 finSupp ( 0g𝐺 ) )
12 1 7 2 3 9 11 6 gsumf1o ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹𝐻 ) ) )