Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptcl.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
3 |
|
gsummptcl.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
4 |
|
gsummptcl.e |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ) |
5 |
|
gsummptfif1o.f |
⊢ 𝐹 = ( 𝑖 ∈ 𝑁 ↦ 𝑋 ) |
6 |
|
gsummptfif1o.h |
⊢ ( 𝜑 → 𝐻 : 𝐶 –1-1-onto→ 𝑁 ) |
7 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
8 |
5
|
fmpt |
⊢ ( ∀ 𝑖 ∈ 𝑁 𝑋 ∈ 𝐵 ↔ 𝐹 : 𝑁 ⟶ 𝐵 ) |
9 |
4 8
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝑁 ⟶ 𝐵 ) |
10 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
11 |
9 3 10
|
fdmfifsupp |
⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
12 |
1 7 2 3 9 11 6
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝐹 ∘ 𝐻 ) ) ) |