Metamath Proof Explorer


Theorem gsummptfssub

Description: The difference of two group sums expressed as mappings. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses gsummptfssub.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfssub.z 0 = ( 0g𝐺 )
gsummptfssub.s = ( -g𝐺 )
gsummptfssub.g ( 𝜑𝐺 ∈ Abel )
gsummptfssub.a ( 𝜑𝐴𝑉 )
gsummptfssub.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
gsummptfssub.d ( ( 𝜑𝑥𝐴 ) → 𝐷𝐵 )
gsummptfssub.f ( 𝜑𝐹 = ( 𝑥𝐴𝐶 ) )
gsummptfssub.h ( 𝜑𝐻 = ( 𝑥𝐴𝐷 ) )
gsummptfssub.w ( 𝜑𝐹 finSupp 0 )
gsummptfssub.v ( 𝜑𝐻 finSupp 0 )
Assertion gsummptfssub ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfssub.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfssub.z 0 = ( 0g𝐺 )
3 gsummptfssub.s = ( -g𝐺 )
4 gsummptfssub.g ( 𝜑𝐺 ∈ Abel )
5 gsummptfssub.a ( 𝜑𝐴𝑉 )
6 gsummptfssub.c ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
7 gsummptfssub.d ( ( 𝜑𝑥𝐴 ) → 𝐷𝐵 )
8 gsummptfssub.f ( 𝜑𝐹 = ( 𝑥𝐴𝐶 ) )
9 gsummptfssub.h ( 𝜑𝐻 = ( 𝑥𝐴𝐷 ) )
10 gsummptfssub.w ( 𝜑𝐹 finSupp 0 )
11 gsummptfssub.v ( 𝜑𝐻 finSupp 0 )
12 5 6 7 8 9 offval2 ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) )
13 12 eqcomd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) = ( 𝐹f 𝐻 ) )
14 13 oveq2d ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) ) = ( 𝐺 Σg ( 𝐹f 𝐻 ) ) )
15 8 6 fmpt3d ( 𝜑𝐹 : 𝐴𝐵 )
16 9 7 fmpt3d ( 𝜑𝐻 : 𝐴𝐵 )
17 1 2 3 4 5 15 16 10 11 gsumsub ( 𝜑 → ( 𝐺 Σg ( 𝐹f 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )
18 14 17 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴 ↦ ( 𝐶 𝐷 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( 𝐺 Σg 𝐻 ) ) )