| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptfssub.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummptfssub.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsummptfssub.s | ⊢  −   =  ( -g ‘ 𝐺 ) | 
						
							| 4 |  | gsummptfssub.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 5 |  | gsummptfssub.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsummptfssub.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 7 |  | gsummptfssub.d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐷  ∈  𝐵 ) | 
						
							| 8 |  | gsummptfssub.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 9 |  | gsummptfssub.h | ⊢ ( 𝜑  →  𝐻  =  ( 𝑥  ∈  𝐴  ↦  𝐷 ) ) | 
						
							| 10 |  | gsummptfssub.w | ⊢ ( 𝜑  →  𝐹  finSupp   0  ) | 
						
							| 11 |  | gsummptfssub.v | ⊢ ( 𝜑  →  𝐻  finSupp   0  ) | 
						
							| 12 | 5 6 7 8 9 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐻 )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  −  𝐷 ) ) ) | 
						
							| 13 | 12 | eqcomd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  −  𝐷 ) )  =  ( 𝐹  ∘f   −  𝐻 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  −  𝐷 ) ) )  =  ( 𝐺  Σg  ( 𝐹  ∘f   −  𝐻 ) ) ) | 
						
							| 15 | 8 6 | fmpt3d | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 16 | 9 7 | fmpt3d | ⊢ ( 𝜑  →  𝐻 : 𝐴 ⟶ 𝐵 ) | 
						
							| 17 | 1 2 3 4 5 15 16 10 11 | gsumsub | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝐹  ∘f   −  𝐻 ) )  =  ( ( 𝐺  Σg  𝐹 )  −  ( 𝐺  Σg  𝐻 ) ) ) | 
						
							| 18 | 14 17 | eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑥  ∈  𝐴  ↦  ( 𝐶  −  𝐷 ) ) )  =  ( ( 𝐺  Σg  𝐹 )  −  ( 𝐺  Σg  𝐻 ) ) ) |