Metamath Proof Explorer


Theorem gsummptfzcl

Description: Closure of a finite group sum over a finite set of sequential integers as map. (Contributed by AV, 14-Dec-2018)

Ref Expression
Hypotheses gsummptfzcl.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfzcl.g ( 𝜑𝐺 ∈ Mnd )
gsummptfzcl.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
gsummptfzcl.i ( 𝜑𝐼 = ( 𝑀 ... 𝑁 ) )
gsummptfzcl.e ( 𝜑 → ∀ 𝑖𝐼 𝑋𝐵 )
Assertion gsummptfzcl ( 𝜑 → ( 𝐺 Σg ( 𝑖𝐼𝑋 ) ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 gsummptfzcl.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfzcl.g ( 𝜑𝐺 ∈ Mnd )
3 gsummptfzcl.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
4 gsummptfzcl.i ( 𝜑𝐼 = ( 𝑀 ... 𝑁 ) )
5 gsummptfzcl.e ( 𝜑 → ∀ 𝑖𝐼 𝑋𝐵 )
6 eqid ( +g𝐺 ) = ( +g𝐺 )
7 eqid ( 𝑖𝐼𝑋 ) = ( 𝑖𝐼𝑋 )
8 7 fmpt ( ∀ 𝑖𝐼 𝑋𝐵 ↔ ( 𝑖𝐼𝑋 ) : 𝐼𝐵 )
9 4 feq2d ( 𝜑 → ( ( 𝑖𝐼𝑋 ) : 𝐼𝐵 ↔ ( 𝑖𝐼𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) )
10 8 9 syl5bb ( 𝜑 → ( ∀ 𝑖𝐼 𝑋𝐵 ↔ ( 𝑖𝐼𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) )
11 5 10 mpbid ( 𝜑 → ( 𝑖𝐼𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 )
12 1 6 2 3 11 gsumval2 ( 𝜑 → ( 𝐺 Σg ( 𝑖𝐼𝑋 ) ) = ( seq 𝑀 ( ( +g𝐺 ) , ( 𝑖𝐼𝑋 ) ) ‘ 𝑁 ) )
13 5 adantr ( ( 𝜑𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑖𝐼 𝑋𝐵 )
14 13 8 sylib ( ( 𝜑𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑖𝐼𝑋 ) : 𝐼𝐵 )
15 4 eqcomd ( 𝜑 → ( 𝑀 ... 𝑁 ) = 𝐼 )
16 15 eleq2d ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑥𝐼 ) )
17 16 biimpa ( ( 𝜑𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥𝐼 )
18 14 17 ffvelrnd ( ( 𝜑𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑖𝐼𝑋 ) ‘ 𝑥 ) ∈ 𝐵 )
19 2 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝐺 ∈ Mnd )
20 simprl ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑥𝐵 )
21 simprr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑦𝐵 )
22 1 6 mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
23 19 20 21 22 syl3anc ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
24 3 18 23 seqcl ( 𝜑 → ( seq 𝑀 ( ( +g𝐺 ) , ( 𝑖𝐼𝑋 ) ) ‘ 𝑁 ) ∈ 𝐵 )
25 12 24 eqeltrd ( 𝜑 → ( 𝐺 Σg ( 𝑖𝐼𝑋 ) ) ∈ 𝐵 )