Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfzcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptfzcl.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
3 |
|
gsummptfzcl.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
gsummptfzcl.i |
⊢ ( 𝜑 → 𝐼 = ( 𝑀 ... 𝑁 ) ) |
5 |
|
gsummptfzcl.e |
⊢ ( 𝜑 → ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) = ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) |
8 |
7
|
fmpt |
⊢ ( ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
9 |
4
|
feq2d |
⊢ ( 𝜑 → ( ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) ) |
10 |
8 9
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ↔ ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) ) |
11 |
5 10
|
mpbid |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
12 |
1 6 2 3 11
|
gsumval2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) = ( seq 𝑀 ( ( +g ‘ 𝐺 ) , ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ‘ 𝑁 ) ) |
13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ∀ 𝑖 ∈ 𝐼 𝑋 ∈ 𝐵 ) |
14 |
13 8
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) : 𝐼 ⟶ 𝐵 ) |
15 |
4
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = 𝐼 ) |
16 |
15
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 ... 𝑁 ) ↔ 𝑥 ∈ 𝐼 ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ 𝐼 ) |
18 |
14 17
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ‘ 𝑥 ) ∈ 𝐵 ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Mnd ) |
20 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
22 |
1 6
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
24 |
3 18 23
|
seqcl |
⊢ ( 𝜑 → ( seq 𝑀 ( ( +g ‘ 𝐺 ) , ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ‘ 𝑁 ) ∈ 𝐵 ) |
25 |
12 24
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑖 ∈ 𝐼 ↦ 𝑋 ) ) ∈ 𝐵 ) |