Metamath Proof Explorer


Theorem gsummptfzsplit

Description: Split a group sum expressed as mapping with a finite set of sequential integers as domain into two parts, extracting a singleton from the right. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses gsummptfzsplit.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfzsplit.p + = ( +g𝐺 )
gsummptfzsplit.g ( 𝜑𝐺 ∈ CMnd )
gsummptfzsplit.n ( 𝜑𝑁 ∈ ℕ0 )
gsummptfzsplit.y ( ( 𝜑𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑌𝐵 )
Assertion gsummptfzsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝑌 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfzsplit.b 𝐵 = ( Base ‘ 𝐺 )
2 gsummptfzsplit.p + = ( +g𝐺 )
3 gsummptfzsplit.g ( 𝜑𝐺 ∈ CMnd )
4 gsummptfzsplit.n ( 𝜑𝑁 ∈ ℕ0 )
5 gsummptfzsplit.y ( ( 𝜑𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑌𝐵 )
6 fzfid ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ∈ Fin )
7 fzp1disj ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅
8 7 a1i ( 𝜑 → ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ )
9 elnn0uz ( 𝑁 ∈ ℕ0𝑁 ∈ ( ℤ ‘ 0 ) )
10 4 9 sylib ( 𝜑𝑁 ∈ ( ℤ ‘ 0 ) )
11 fzsuc ( 𝑁 ∈ ( ℤ ‘ 0 ) → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) )
12 10 11 syl ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) )
13 1 2 3 6 5 8 12 gsummptfidmsplit ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝑌 ) ) ) )