Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfzsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptfzsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsummptfzsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsummptfzsplit.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
gsummptfzsplit.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ) → 𝑌 ∈ 𝐵 ) |
6 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) ∈ Fin ) |
7 |
|
fzp1disj |
⊢ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
9 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
10 |
4 9
|
sylib |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
11 |
|
fzsuc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
13 |
1 2 3 6 5 8 12
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... ( 𝑁 + 1 ) ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { ( 𝑁 + 1 ) } ↦ 𝑌 ) ) ) ) |