Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfzsplit.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptfzsplit.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsummptfzsplit.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsummptfzsplit.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
5 |
|
gsummptfzsplitl.y |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑌 ∈ 𝐵 ) |
6 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
7 |
|
incom |
⊢ ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ( { 0 } ∩ ( 1 ... 𝑁 ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ( { 0 } ∩ ( 1 ... 𝑁 ) ) ) |
9 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
10 |
9
|
oveq1i |
⊢ ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 0 + 1 ) ... 𝑁 ) ) |
12 |
11
|
ineq2d |
⊢ ( 𝜑 → ( { 0 } ∩ ( 1 ... 𝑁 ) ) = ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
13 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
14 |
13
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
15 |
|
fzpreddisj |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) = ∅ ) |
16 |
4 14 15
|
3syl |
⊢ ( 𝜑 → ( { 0 } ∩ ( ( 0 + 1 ) ... 𝑁 ) ) = ∅ ) |
17 |
8 12 16
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∩ { 0 } ) = ∅ ) |
18 |
|
fzpred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
19 |
4 14 18
|
3syl |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) ) |
20 |
|
uncom |
⊢ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( ( 0 + 1 ) ... 𝑁 ) ∪ { 0 } ) |
21 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
22 |
21
|
oveq1i |
⊢ ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) |
23 |
22
|
uneq1i |
⊢ ( ( ( 0 + 1 ) ... 𝑁 ) ∪ { 0 } ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) |
24 |
20 23
|
eqtri |
⊢ ( { 0 } ∪ ( ( 0 + 1 ) ... 𝑁 ) ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) |
25 |
19 24
|
eqtrdi |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) = ( ( 1 ... 𝑁 ) ∪ { 0 } ) ) |
26 |
1 2 3 6 5 17 25
|
gsummptfidmsplit |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ ( 1 ... 𝑁 ) ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 0 } ↦ 𝑌 ) ) ) ) |