| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptmhm.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummptmhm.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsummptmhm.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 4 |  | gsummptmhm.h | ⊢ ( 𝜑  →  𝐻  ∈  Mnd ) | 
						
							| 5 |  | gsummptmhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsummptmhm.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 7 |  | gsummptmhm.c | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  𝐶  ∈  𝐵 ) | 
						
							| 8 |  | gsummptmhm.w | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  finSupp   0  ) | 
						
							| 9 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 )  =  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 11 | 1 10 | mhmf | ⊢ ( 𝐾  ∈  ( 𝐺  MndHom  𝐻 )  →  𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 12 |  | ffn | ⊢ ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 )  →  𝐾  Fn  𝐵 ) | 
						
							| 13 | 6 11 12 | 3syl | ⊢ ( 𝜑  →  𝐾  Fn  𝐵 ) | 
						
							| 14 |  | dffn5 | ⊢ ( 𝐾  Fn  𝐵  ↔  𝐾  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 15 | 13 14 | sylib | ⊢ ( 𝜑  →  𝐾  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐾 ‘ 𝑦 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝐶  →  ( 𝐾 ‘ 𝑦 )  =  ( 𝐾 ‘ 𝐶 ) ) | 
						
							| 17 | 7 9 15 16 | fmptco | ⊢ ( 𝜑  →  ( 𝐾  ∘  ( 𝑥  ∈  𝐴  ↦  𝐶 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐾 ‘ 𝐶 ) ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝐾  ∘  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) )  =  ( 𝐻  Σg  ( 𝑥  ∈  𝐴  ↦  ( 𝐾 ‘ 𝐶 ) ) ) ) | 
						
							| 19 | 7 | fmpttd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↦  𝐶 ) : 𝐴 ⟶ 𝐵 ) | 
						
							| 20 | 1 2 3 4 5 6 19 8 | gsummhm | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝐾  ∘  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) ) ) | 
						
							| 21 | 18 20 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐻  Σg  ( 𝑥  ∈  𝐴  ↦  ( 𝐾 ‘ 𝐶 ) ) )  =  ( 𝐾 ‘ ( 𝐺  Σg  ( 𝑥  ∈  𝐴  ↦  𝐶 ) ) ) ) |