Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptnn0fzfv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsummptnn0fzfv.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
gsummptnn0fzfv.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
gsummptnn0fzfv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) ) |
5 |
|
gsummptnn0fzfv.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
6 |
|
gsummptnn0fzfv.u |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
7 |
|
elmapi |
⊢ ( 𝐹 ∈ ( 𝐵 ↑m ℕ0 ) → 𝐹 : ℕ0 ⟶ 𝐵 ) |
8 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
9 |
8
|
ex |
⊢ ( 𝐹 : ℕ0 ⟶ 𝐵 → ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
10 |
4 7 9
|
3syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) ) |
11 |
10
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
12 |
|
breq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑆 < 𝑥 ↔ 𝑆 < 𝑘 ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑘 → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) ) |
15 |
14
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑆 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
16 |
6 15
|
sylib |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝑆 < 𝑘 → ( 𝐹 ‘ 𝑘 ) = 0 ) ) |
17 |
1 2 3 11 5 16
|
gsummptnn0fz |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 0 ... 𝑆 ) ↦ ( 𝐹 ‘ 𝑘 ) ) ) ) |