Metamath Proof Explorer


Theorem gsummptun

Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsummptun.b 𝐵 = ( Base ‘ 𝑊 )
gsummptun.p + = ( +g𝑊 )
gsummptun.w ( 𝜑𝑊 ∈ CMnd )
gsummptun.a ( 𝜑 → ( 𝐴𝐶 ) ∈ Fin )
gsummptun.d ( 𝜑 → ( 𝐴𝐶 ) = ∅ )
gsummptun.1 ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝐷𝐵 )
Assertion gsummptun ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥𝐴𝐷 ) ) + ( 𝑊 Σg ( 𝑥𝐶𝐷 ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummptun.b 𝐵 = ( Base ‘ 𝑊 )
2 gsummptun.p + = ( +g𝑊 )
3 gsummptun.w ( 𝜑𝑊 ∈ CMnd )
4 gsummptun.a ( 𝜑 → ( 𝐴𝐶 ) ∈ Fin )
5 gsummptun.d ( 𝜑 → ( 𝐴𝐶 ) = ∅ )
6 gsummptun.1 ( ( 𝜑𝑥 ∈ ( 𝐴𝐶 ) ) → 𝐷𝐵 )
7 eqidd ( 𝜑 → ( 𝐴𝐶 ) = ( 𝐴𝐶 ) )
8 1 2 3 4 6 5 7 gsummptfidmsplit ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥𝐴𝐷 ) ) + ( 𝑊 Σg ( 𝑥𝐶𝐷 ) ) ) )