Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsummptun
Metamath Proof Explorer
Description: Group sum of a disjoint union, whereas sums are expressed as mappings.
(Contributed by Thierry Arnoux , 28-Mar-2018) (Proof shortened by AV , 11-Dec-2019)
Ref
Expression
Hypotheses
gsummptun.b
⊢ 𝐵 = ( Base ‘ 𝑊 )
gsummptun.p
⊢ + = ( +g ‘ 𝑊 )
gsummptun.w
⊢ ( 𝜑 → 𝑊 ∈ CMnd )
gsummptun.a
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) ∈ Fin )
gsummptun.d
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ )
gsummptun.1
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → 𝐷 ∈ 𝐵 )
Assertion
gsummptun
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) + ( 𝑊 Σg ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) ) )
Proof
Step
Hyp
Ref
Expression
1
gsummptun.b
⊢ 𝐵 = ( Base ‘ 𝑊 )
2
gsummptun.p
⊢ + = ( +g ‘ 𝑊 )
3
gsummptun.w
⊢ ( 𝜑 → 𝑊 ∈ CMnd )
4
gsummptun.a
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) ∈ Fin )
5
gsummptun.d
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐶 ) = ∅ )
6
gsummptun.1
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ) → 𝐷 ∈ 𝐵 )
7
eqidd
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐶 ) = ( 𝐴 ∪ 𝐶 ) )
8
1 2 3 4 6 5 7
gsummptfidmsplit
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( 𝐴 ∪ 𝐶 ) ↦ 𝐷 ) ) = ( ( 𝑊 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) ) + ( 𝑊 Σg ( 𝑥 ∈ 𝐶 ↦ 𝐷 ) ) ) )