| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummulc1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | gsummulc1.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | gsummulc1.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 4 |  | gsummulc1.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 5 |  | gsummulc1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | gsummulc1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 7 |  | gsummulc1.x | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | gsummulc1.n | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 )  finSupp   0  ) | 
						
							| 9 | 4 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 10 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 12 | 1 3 | ringrghm | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑌  ∈  𝐵 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥  ·  𝑌 ) )  ∈  ( 𝑅  GrpHom  𝑅 ) ) | 
						
							| 13 | 4 6 12 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥  ·  𝑌 ) )  ∈  ( 𝑅  GrpHom  𝑅 ) ) | 
						
							| 14 |  | ghmmhm | ⊢ ( ( 𝑥  ∈  𝐵  ↦  ( 𝑥  ·  𝑌 ) )  ∈  ( 𝑅  GrpHom  𝑅 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥  ·  𝑌 ) )  ∈  ( 𝑅  MndHom  𝑅 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑥  ·  𝑌 ) )  ∈  ( 𝑅  MndHom  𝑅 ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ·  𝑌 )  =  ( 𝑋  ·  𝑌 ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑅  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  →  ( 𝑥  ·  𝑌 )  =  ( ( 𝑅  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  ·  𝑌 ) ) | 
						
							| 18 | 1 2 9 11 5 15 7 8 16 17 | gsummhm2 | ⊢ ( 𝜑  →  ( 𝑅  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑋  ·  𝑌 ) ) )  =  ( ( 𝑅  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  ·  𝑌 ) ) |