Database BASIC ALGEBRAIC STRUCTURES Groups Abelian groups Group sum operation gsummulg  
				
		 
		
			
		 
		Description:   Nonnegative multiple of a group sum.  (Contributed by Mario Carneiro , 15-Dec-2014)   (Revised by Mario Carneiro , 7-Jan-2015)   (Revised by AV , 6-Jun-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						gsummulg.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
					
						gsummulg.z ⊢   0    =  ( 0g  ‘ 𝐺  )  
					
						gsummulg.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
					
						gsummulg.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
					
						gsummulg.f ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝑋   ∈  𝐵  )  
					
						gsummulg.w ⊢  ( 𝜑   →  ( 𝑘   ∈  𝐴   ↦  𝑋  )  finSupp   0   )  
					
						gsummulg.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
					
						gsummulg.n ⊢  ( 𝜑   →  𝑁   ∈  ℕ0  )  
				
					Assertion 
					gsummulg ⊢   ( 𝜑   →  ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  ( 𝑁   ·   𝑋  ) ) )  =  ( 𝑁   ·   ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  𝑋  ) ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							gsummulg.b ⊢  𝐵   =  ( Base ‘ 𝐺  )  
						
							2 
								
							 
							gsummulg.z ⊢   0    =  ( 0g  ‘ 𝐺  )  
						
							3 
								
							 
							gsummulg.t ⊢   ·    =  ( .g  ‘ 𝐺  )  
						
							4 
								
							 
							gsummulg.a ⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
						
							5 
								
							 
							gsummulg.f ⊢  ( ( 𝜑   ∧  𝑘   ∈  𝐴  )  →  𝑋   ∈  𝐵  )  
						
							6 
								
							 
							gsummulg.w ⊢  ( 𝜑   →  ( 𝑘   ∈  𝐴   ↦  𝑋  )  finSupp   0   )  
						
							7 
								
							 
							gsummulg.g ⊢  ( 𝜑   →  𝐺   ∈  CMnd )  
						
							8 
								
							 
							gsummulg.n ⊢  ( 𝜑   →  𝑁   ∈  ℕ0  )  
						
							9 
								8 
							 
							nn0zd ⊢  ( 𝜑   →  𝑁   ∈  ℤ )  
						
							10 
								8 
							 
							olcd ⊢  ( 𝜑   →  ( 𝐺   ∈  Abel  ∨  𝑁   ∈  ℕ0  ) )  
						
							11 
								1  2  3  4  5  6  7  9  10 
							 
							gsummulglem ⊢  ( 𝜑   →  ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  ( 𝑁   ·   𝑋  ) ) )  =  ( 𝑁   ·   ( 𝐺   Σg 𝑘   ∈  𝐴   ↦  𝑋  ) ) ) )