| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummulg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummulg.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsummulg.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | gsummulg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsummulg.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | gsummulg.w | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 )  finSupp   0  ) | 
						
							| 7 |  | gsummulglem.g | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 8 |  | gsummulglem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 9 |  | gsummulglem.o | ⊢ ( 𝜑  →  ( 𝐺  ∈  Abel  ∨  𝑁  ∈  ℕ0 ) ) | 
						
							| 10 |  | cmnmnd | ⊢ ( 𝐺  ∈  CMnd  →  𝐺  ∈  Mnd ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 12 | 1 3 | mulgghm | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 13 |  | ghmmhm | ⊢ ( ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  GrpHom  𝐺 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐺  ∈  Abel  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 15 | 14 | expcom | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝐺  ∈  Abel  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) ) | 
						
							| 16 | 8 15 | syl | ⊢ ( 𝜑  →  ( 𝐺  ∈  Abel  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) ) | 
						
							| 17 | 1 3 | mulgmhm | ⊢ ( ( 𝐺  ∈  CMnd  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝐺  ∈  CMnd  →  ( 𝑁  ∈  ℕ0  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) ) | 
						
							| 19 | 7 18 | syl | ⊢ ( 𝜑  →  ( 𝑁  ∈  ℕ0  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) ) | 
						
							| 20 | 16 19 9 | mpjaod | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦  ( 𝑁  ·  𝑥 ) )  ∈  ( 𝐺  MndHom  𝐺 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑁  ·  𝑥 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) )  →  ( 𝑁  ·  𝑥 )  =  ( 𝑁  ·  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) ) ) | 
						
							| 23 | 1 2 7 11 4 20 5 6 21 22 | gsummhm2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑁  ·  𝑋 ) ) )  =  ( 𝑁  ·  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) ) ) |