| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummulg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsummulg.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | gsummulg.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | gsummulg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | gsummulg.f | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝑋  ∈  𝐵 ) | 
						
							| 6 |  | gsummulg.w | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝑋 )  finSupp   0  ) | 
						
							| 7 |  | gsummulgz.g | ⊢ ( 𝜑  →  𝐺  ∈  Abel ) | 
						
							| 8 |  | gsummulgz.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 9 |  | ablcmn | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  CMnd ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝜑  →  𝐺  ∈  CMnd ) | 
						
							| 11 | 7 | orcd | ⊢ ( 𝜑  →  ( 𝐺  ∈  Abel  ∨  𝑁  ∈  ℕ0 ) ) | 
						
							| 12 | 1 2 3 4 5 6 10 8 11 | gsummulglem | ⊢ ( 𝜑  →  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  ( 𝑁  ·  𝑋 ) ) )  =  ( 𝑁  ·  ( 𝐺  Σg  ( 𝑘  ∈  𝐴  ↦  𝑋 ) ) ) ) |