| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummulg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsummulg.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsummulg.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 4 |
|
gsummulg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsummulg.f |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) |
| 6 |
|
gsummulg.w |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) finSupp 0 ) |
| 7 |
|
gsummulgz.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 8 |
|
gsummulgz.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 |
|
ablcmn |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) |
| 10 |
7 9
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 11 |
7
|
orcd |
⊢ ( 𝜑 → ( 𝐺 ∈ Abel ∨ 𝑁 ∈ ℕ0 ) ) |
| 12 |
1 2 3 4 5 6 10 8 11
|
gsummulglem |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 𝑁 · 𝑋 ) ) ) = ( 𝑁 · ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) ) |