Metamath Proof Explorer


Theorem gsumply1subr

Description: Evaluate a group sum in a polynomial ring over a subring. (Contributed by AV, 22-Sep-2019) (Proof shortened by AV, 31-Jan-2020)

Ref Expression
Hypotheses subrgply1.s 𝑆 = ( Poly1𝑅 )
subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
subrgply1.u 𝑈 = ( Poly1𝐻 )
subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
gsumply1subr.s ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
gsumply1subr.a ( 𝜑𝐴𝑉 )
gsumply1subr.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion gsumply1subr ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 subrgply1.s 𝑆 = ( Poly1𝑅 )
2 subrgply1.h 𝐻 = ( 𝑅s 𝑇 )
3 subrgply1.u 𝑈 = ( Poly1𝐻 )
4 subrgply1.b 𝐵 = ( Base ‘ 𝑈 )
5 gsumply1subr.s ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 gsumply1subr.a ( 𝜑𝐴𝑉 )
7 gsumply1subr.f ( 𝜑𝐹 : 𝐴𝐵 )
8 1 2 3 4 subrgply1 ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ∈ ( SubRing ‘ 𝑆 ) )
9 subrgsubg ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubGrp ‘ 𝑆 ) )
10 subgsubm ( 𝐵 ∈ ( SubGrp ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
11 9 10 syl ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → 𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
12 5 8 11 3syl ( 𝜑𝐵 ∈ ( SubMnd ‘ 𝑆 ) )
13 eqid ( 𝑆s 𝐵 ) = ( 𝑆s 𝐵 )
14 6 12 7 13 gsumsubm ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( ( 𝑆s 𝐵 ) Σg 𝐹 ) )
15 7 6 fexd ( 𝜑𝐹 ∈ V )
16 ovexd ( 𝜑 → ( 𝑆s 𝐵 ) ∈ V )
17 3 fvexi 𝑈 ∈ V
18 17 a1i ( 𝜑𝑈 ∈ V )
19 eqid ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 )
20 4 oveq2i ( 𝑆s 𝐵 ) = ( 𝑆s ( Base ‘ 𝑈 ) )
21 1 2 3 19 5 20 ressply1bas ( 𝜑 → ( Base ‘ 𝑈 ) = ( Base ‘ ( 𝑆s 𝐵 ) ) )
22 21 eqcomd ( 𝜑 → ( Base ‘ ( 𝑆s 𝐵 ) ) = ( Base ‘ 𝑈 ) )
23 13 subrgring ( 𝐵 ∈ ( SubRing ‘ 𝑆 ) → ( 𝑆s 𝐵 ) ∈ Ring )
24 8 23 syl ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑆s 𝐵 ) ∈ Ring )
25 ringmgm ( ( 𝑆s 𝐵 ) ∈ Ring → ( 𝑆s 𝐵 ) ∈ Mgm )
26 5 24 25 3syl ( 𝜑 → ( 𝑆s 𝐵 ) ∈ Mgm )
27 simpl ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝜑 )
28 1 2 3 4 5 13 ressply1bas ( 𝜑𝐵 = ( Base ‘ ( 𝑆s 𝐵 ) ) )
29 28 eqcomd ( 𝜑 → ( Base ‘ ( 𝑆s 𝐵 ) ) = 𝐵 )
30 29 eleq2d ( 𝜑 → ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ↔ 𝑠𝐵 ) )
31 30 biimpcd ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) → ( 𝜑𝑠𝐵 ) )
32 31 adantr ( ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) → ( 𝜑𝑠𝐵 ) )
33 32 impcom ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝑠𝐵 )
34 29 eleq2d ( 𝜑 → ( 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ↔ 𝑡𝐵 ) )
35 34 biimpcd ( 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) → ( 𝜑𝑡𝐵 ) )
36 35 adantl ( ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) → ( 𝜑𝑡𝐵 ) )
37 36 impcom ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → 𝑡𝐵 )
38 1 2 3 4 5 13 ressply1add ( ( 𝜑 ∧ ( 𝑠𝐵𝑡𝐵 ) ) → ( 𝑠 ( +g𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) )
39 27 33 37 38 syl12anc ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → ( 𝑠 ( +g𝑈 ) 𝑡 ) = ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) )
40 39 eqcomd ( ( 𝜑 ∧ ( 𝑠 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ∧ 𝑡 ∈ ( Base ‘ ( 𝑆s 𝐵 ) ) ) ) → ( 𝑠 ( +g ‘ ( 𝑆s 𝐵 ) ) 𝑡 ) = ( 𝑠 ( +g𝑈 ) 𝑡 ) )
41 7 ffund ( 𝜑 → Fun 𝐹 )
42 7 frnd ( 𝜑 → ran 𝐹𝐵 )
43 42 28 sseqtrd ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ ( 𝑆s 𝐵 ) ) )
44 15 16 18 22 26 40 41 43 gsummgmpropd ( 𝜑 → ( ( 𝑆s 𝐵 ) Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )
45 14 44 eqtrd ( 𝜑 → ( 𝑆 Σg 𝐹 ) = ( 𝑈 Σg 𝐹 ) )