Metamath Proof Explorer
Description: Value of the group sum operation over the pair { 1 , 2 } .
(Contributed by AV, 14-Dec-2018)
|
|
Ref |
Expression |
|
Hypotheses |
gsumpr12val.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
gsumpr12val.p |
⊢ + = ( +g ‘ 𝐺 ) |
|
|
gsumpr12val.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
|
|
gsumpr12val.f |
⊢ ( 𝜑 → 𝐹 : { 1 , 2 } ⟶ 𝐵 ) |
|
Assertion |
gsumpr12val |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
gsumpr12val.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumpr12val.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumpr12val.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
gsumpr12val.f |
⊢ ( 𝜑 → 𝐹 : { 1 , 2 } ⟶ 𝐵 ) |
5 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
6 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → 2 = ( 1 + 1 ) ) |
8 |
1 2 3 5 7 4
|
gsumprval |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 1 ) + ( 𝐹 ‘ 2 ) ) ) |