| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumpropd.f | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 2 |  | gsumpropd.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑊 ) | 
						
							| 3 |  | gsumpropd.h | ⊢ ( 𝜑  →  𝐻  ∈  𝑋 ) | 
						
							| 4 |  | gsumpropd.b | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 5 |  | gsumpropd.p | ⊢ ( 𝜑  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 6 | 5 | oveqd | ⊢ ( 𝜑  →  ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ↔  ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡 ) ) | 
						
							| 8 | 5 | oveqd | ⊢ ( 𝜑  →  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 ) ) | 
						
							| 9 | 8 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡  ↔  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) ) | 
						
							| 10 | 7 9 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 )  ↔  ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) ) ) | 
						
							| 11 | 4 10 | raleqbidv | ⊢ ( 𝜑  →  ( ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 )  ↔  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) ) ) | 
						
							| 12 | 4 11 | rabeqbidv | ⊢ ( 𝜑  →  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) }  =  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) | 
						
							| 13 | 12 | sseq2d | ⊢ ( 𝜑  →  ( ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) }  ↔  ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 15 | 5 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝐺 )  ∧  𝑏  ∈  ( Base ‘ 𝐺 ) ) )  →  ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 )  =  ( 𝑎 ( +g ‘ 𝐻 ) 𝑏 ) ) | 
						
							| 16 | 14 4 15 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 17 | 5 | seqeq2d | ⊢ ( 𝜑  →  seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 )  =  seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ) | 
						
							| 18 | 17 | fveq1d | ⊢ ( 𝜑  →  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 )  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 )  ↔  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) | 
						
							| 20 | 19 | anbi2d | ⊢ ( 𝜑  →  ( ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) )  ↔  ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 21 | 20 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) )  ↔  ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 22 | 21 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) )  ↔  ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 23 | 22 | iotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) ) )  =  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ) | 
						
							| 24 | 12 | difeq2d | ⊢ ( 𝜑  →  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } )  =  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) | 
						
							| 25 | 24 | imaeq2d | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝜑  →  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) )  =  ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) )  =  ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) | 
						
							| 28 | 27 | f1oeq2d | ⊢ ( 𝜑  →  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ↔  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) | 
						
							| 29 | 25 | f1oeq3d | ⊢ ( 𝜑  →  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ↔  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) | 
						
							| 30 | 28 29 | bitrd | ⊢ ( 𝜑  →  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ↔  𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) | 
						
							| 31 | 5 | seqeq2d | ⊢ ( 𝜑  →  seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) )  =  seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ) | 
						
							| 32 | 31 26 | fveq12d | ⊢ ( 𝜑  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) )  ↔  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) | 
						
							| 34 | 30 33 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) )  ↔  ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) | 
						
							| 35 | 34 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) )  ↔  ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) | 
						
							| 36 | 35 | iotabidv | ⊢ ( 𝜑  →  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) )  =  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) | 
						
							| 37 | 23 36 | ifeq12d | ⊢ ( 𝜑  →  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) )  =  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) ) | 
						
							| 38 | 13 16 37 | ifbieq12d | ⊢ ( 𝜑  →  if ( ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ,  ( 0g ‘ 𝐺 ) ,  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) )  =  if ( ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ,  ( 0g ‘ 𝐻 ) ,  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) ) ) | 
						
							| 39 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 40 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 41 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 42 |  | eqid | ⊢ { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) }  =  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } | 
						
							| 43 |  | eqidd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) | 
						
							| 44 |  | eqidd | ⊢ ( 𝜑  →  dom  𝐹  =  dom  𝐹 ) | 
						
							| 45 | 39 40 41 42 43 2 1 44 | gsumvalx | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  if ( ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ,  ( 0g ‘ 𝐺 ) ,  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐺 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐺 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐺 ) ( ( 𝑠 ( +g ‘ 𝐺 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐺 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) ) ) | 
						
							| 46 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 47 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 48 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 49 |  | eqid | ⊢ { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) }  =  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } | 
						
							| 50 |  | eqidd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  =  ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) | 
						
							| 51 | 46 47 48 49 50 3 1 44 | gsumvalx | ⊢ ( 𝜑  →  ( 𝐻  Σg  𝐹 )  =  if ( ran  𝐹  ⊆  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ,  ( 0g ‘ 𝐻 ) ,  if ( dom  𝐹  ∈  ran  ... ,  ( ℩ 𝑥 ∃ 𝑚 ∃ 𝑛  ∈  ( ℤ≥ ‘ 𝑚 ) ( dom  𝐹  =  ( 𝑚 ... 𝑛 )  ∧  𝑥  =  ( seq 𝑚 ( ( +g ‘ 𝐻 ) ,  𝐹 ) ‘ 𝑛 ) ) ) ,  ( ℩ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) –1-1-onto→ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) )  ∧  𝑥  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( 𝐹  ∘  𝑓 ) ) ‘ ( ♯ ‘ ( ◡ 𝐹  “  ( V  ∖  { 𝑠  ∈  ( Base ‘ 𝐻 )  ∣  ∀ 𝑡  ∈  ( Base ‘ 𝐻 ) ( ( 𝑠 ( +g ‘ 𝐻 ) 𝑡 )  =  𝑡  ∧  ( 𝑡 ( +g ‘ 𝐻 ) 𝑠 )  =  𝑡 ) } ) ) ) ) ) ) ) ) ) | 
						
							| 52 | 38 45 51 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( 𝐻  Σg  𝐹 ) ) |