| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumprval.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | gsumprval.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | gsumprval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝑉 ) | 
						
							| 4 |  | gsumprval.m | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 5 |  | gsumprval.n | ⊢ ( 𝜑  →  𝑁  =  ( 𝑀  +  1 ) ) | 
						
							| 6 |  | gsumprval.f | ⊢ ( 𝜑  →  𝐹 : { 𝑀 ,  𝑁 } ⟶ 𝐵 ) | 
						
							| 7 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 11 |  | fzpr | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... ( 𝑀  +  1 ) )  =  { 𝑀 ,  ( 𝑀  +  1 ) } ) | 
						
							| 12 | 4 11 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑀  +  1 ) )  =  { 𝑀 ,  ( 𝑀  +  1 ) } ) | 
						
							| 13 | 5 | eqcomd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  =  𝑁 ) | 
						
							| 14 | 13 | preq2d | ⊢ ( 𝜑  →  { 𝑀 ,  ( 𝑀  +  1 ) }  =  { 𝑀 ,  𝑁 } ) | 
						
							| 15 | 12 14 | eqtrd | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑀  +  1 ) )  =  { 𝑀 ,  𝑁 } ) | 
						
							| 16 | 15 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : ( 𝑀 ... ( 𝑀  +  1 ) ) ⟶ 𝐵  ↔  𝐹 : { 𝑀 ,  𝑁 } ⟶ 𝐵 ) ) | 
						
							| 17 | 6 16 | mpbird | ⊢ ( 𝜑  →  𝐹 : ( 𝑀 ... ( 𝑀  +  1 ) ) ⟶ 𝐵 ) | 
						
							| 18 | 1 2 3 10 17 | gsumval2 | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 19 |  | seqp1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ ( 𝑀  +  1 ) )  =  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 21 |  | seq1 | ⊢ ( 𝑀  ∈  ℤ  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 22 | 4 21 | syl | ⊢ ( 𝜑  →  ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  =  ( 𝐹 ‘ 𝑀 ) ) | 
						
							| 23 | 13 | fveq2d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑀  +  1 ) )  =  ( 𝐹 ‘ 𝑁 ) ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝜑  →  ( ( seq 𝑀 (  +  ,  𝐹 ) ‘ 𝑀 )  +  ( 𝐹 ‘ ( 𝑀  +  1 ) ) )  =  ( ( 𝐹 ‘ 𝑀 )  +  ( 𝐹 ‘ 𝑁 ) ) ) | 
						
							| 25 | 18 20 24 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐺  Σg  𝐹 )  =  ( ( 𝐹 ‘ 𝑀 )  +  ( 𝐹 ‘ 𝑁 ) ) ) |