Step |
Hyp |
Ref |
Expression |
1 |
|
gsumprval.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
gsumprval.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
gsumprval.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) |
4 |
|
gsumprval.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
5 |
|
gsumprval.n |
⊢ ( 𝜑 → 𝑁 = ( 𝑀 + 1 ) ) |
6 |
|
gsumprval.f |
⊢ ( 𝜑 → 𝐹 : { 𝑀 , 𝑁 } ⟶ 𝐵 ) |
7 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
|
fzpr |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
13 |
5
|
eqcomd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) = 𝑁 ) |
14 |
13
|
preq2d |
⊢ ( 𝜑 → { 𝑀 , ( 𝑀 + 1 ) } = { 𝑀 , 𝑁 } ) |
15 |
12 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , 𝑁 } ) |
16 |
15
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : ( 𝑀 ... ( 𝑀 + 1 ) ) ⟶ 𝐵 ↔ 𝐹 : { 𝑀 , 𝑁 } ⟶ 𝐵 ) ) |
17 |
6 16
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ( 𝑀 ... ( 𝑀 + 1 ) ) ⟶ 𝐵 ) |
18 |
1 2 3 10 17
|
gsumval2 |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) ) |
19 |
|
seqp1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
20 |
8 19
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑀 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) ) |
21 |
|
seq1 |
⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
22 |
4 21
|
syl |
⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
23 |
13
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 + 1 ) ) = ( 𝐹 ‘ 𝑁 ) ) |
24 |
22 23
|
oveq12d |
⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) + ( 𝐹 ‘ ( 𝑀 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑀 ) + ( 𝐹 ‘ 𝑁 ) ) ) |
25 |
18 20 24
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐹 ‘ 𝑀 ) + ( 𝐹 ‘ 𝑁 ) ) ) |